EXPERIMENTAL STUDY ON MICROSTRUCTURE AND MECHANICAL CHARACTERISTICS OF MUCKY SOIL IN NANSHA OF GUANGZHOU
-
摘要: 为探讨软土微观结构的变化对宏观力学性质的影响机制,对广州南沙区淤泥质土进行了固结快剪试验,结合扫描电镜及微观层析成像技术,定性及定量分析剪切土样上下部分微观结构的变化规律及对抗剪强度的影响机制。结果表明:随着固结压力的持续增大,软土的孔隙比逐渐降低,最终的孔隙比大多集中在0.5~0.6,其变化存在明显的拐点,大多集中在lg(p/kPa)=1.5~2.0。剪切破坏后土样下部的含水率明显大于上部的含水率,差值在1.8%~3.3%。淤泥质土的固结快剪直剪试验的内摩擦角φ值达到或接近14°;黏聚力与土的初始含水量几乎无关;黏聚力与高岭石的含量呈现正相关的关系,而内摩擦角与石英的含量并没有呈现出绝对的线性关系。南沙淤泥质土从空间架构上看,结构类型较多,既有蜂窝状、海绵状、絮状结构,也有片状、骨架状和凝块状结构,接触方式以面-面、面-边、角-面、角-角接触为主。存在固结压力、自由水与颗粒的响应机制,其结果可以较好地解释工程淤堵现象。Abstract: To ascertain the influential mechanisms of the microstructure for soft soil on the macroscopic mechanical properties, consolidation shear tests of mucky soil in Nansha zone of Guangzhou were conducted. Combined with the scanning electron microscope and the microscopic tomography technique, the microstructure changes of the upper and lower parts for specimens and the influential mechanisms on the shear strength were qualitatively and quantitatively analyzed. The results showed that the void ratios of the soft soil gradually decreased with the continuous increase of consolidation pressure, and the final void ratios were mostly between 0.5 to 0.6. There were obvious inflection points for void ratios, and the values of lg(p/kPa) were mostly between 1.5 and 2.0. After shear failure, the moisture contents of the soil specimens from lower locations were significantly higher than that from of the upper, and the differences ranged from 1.8% to 3.3%.The cohension values of mucky soil had little relation with the initial moisture contents of the specimens, and the values of angles for internal friction were about 14° measured by quick direct shear tests. From the perspective of spatial structure, Nansha mucky soil had a variety of structural types, including honeycomb, spongy and flocculent structure, as well as flake, skeleton and agglomerate structure. The contact modes were mainly face-face, face-side, angle-face and angle-angle. The response mechanisms of consolidation pressure, free water and particles could well explain phenomena of engineering silting.
-
Key words:
- mucky soil /
- microstructure /
- consolidation /
- shear strength /
- SEM /
- silting
-
沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1):100-111. 李向全,胡瑞林,张莉. 软土固结过程中的微结构变化特征[J]. 地学前缘, 2000(1):147-152. 张可能,王彦之,胡惠华,等. 洞庭湖砂纹淤泥质土固结过程微观结构变化[J]. 水文地质工程地质, 2018, 45(1):96-102. 张先伟,王常明,李军霞,等. 蠕变条件下软土微观孔隙变化特性[J]. 岩土力学, 2010, 31(4):1061-1067. 孔令伟,吕海波,汪稔,等. 海口某海域软土工程特性的微观机制浅析[J]. 岩土力学, 2002, 23(1):36-40. 毛灵涛,薛茹,安里千,等. 软土孔隙微观结构的分形研究[J]. 中国矿业大学学报, 2005, 34(5):600-604. 周晖,房营光,禹长江. 广州软土固结过程微观结构的显微观测与分析[J]. 岩石力学与工程学报, 2009, 28(增刊2):3830-3837. 蒋明镜,彭立才,朱合华,等. 珠海海积软土剪切带微观结构试验研究[J]. 岩土力学, 2010, 31(7):2017-2023. 莫海鸿,单毅,马灏,等. 软土动剪切模量与微观孔隙结构试验研究[J]. 岩石力学与工程学报, 2016, 35(7):1445-1451. 中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. 周建,邓以亮,曹洋,等. 杭州饱和软土固结过程微观结构试验研究[J]. 中南大学学报(自然科学版), 2014, 45(6):1998-2005. LIU C, TANG C S, SHI B, et al. Automatic Quantification of Crack Patterns by Image Processing[J].Computers & Geosciences, 2013, 57(4):77-80. 朱赞成,李纪伟,林法力,等.不同矿物成分下土样脱附曲线试验研究[J]. 岩土工程学报, 2020(1):1-8. SUN Y L, TANG L S. Use of X-Ray Computed Tomography to Study the Structures and Particle Contacts of Granite Residual Soil[J]. Journal of Central South University, 2019, 26(4):938-954. CHEN R C, DREOSSI D, MANCINI L, et al. PITRE:Software for Phase-Sensitive X-Ray Image Processing and Tomography Reconstruction[J]. Journal of Synchrotron Radiation, 2012, 19(5):836-845. 孙银磊,汤连生,刘洁. 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4):1-29.
点击查看大图
计量
- 文章访问数: 219
- HTML全文浏览量: 22
- PDF下载量: 3
- 被引次数: 0