MECHANICAL PROPERTIES OF BASALT-FIBER-REINFORCED CONCRETE CONFINED WITH BFRP
-
摘要: 纤维增强复材(FRP)约束混凝土可以极大地改善混凝土的力学性能,目前已获得了一定应用。然而,FRP约束混凝土容易出现脆性破坏,在一定程度上限制了其在一些领域的应用。基于此,提出以玄武岩纤维增强复材(BFRP)约束混凝土的同时在混凝土中加入短切玄武岩纤维(BF),以改善混凝土的力学性能。通过改变BFRP层数、BF掺量,研究BFRP约束玄武岩纤维混凝土力学性能的变化规律。结果表明:BFRP约束混凝土的抗压强度与最大弯曲抗力会随着BFRP层数增加而增加;掺加BF不仅可以提高混凝土的强度,还对混凝土起到增韧阻裂作用,使混凝土破坏形式由脆性破坏向塑性破坏转变;当纤维体积掺量为0.1%时,增韧阻裂和增强效果最好。因此,在BFRP约束混凝土中加入BF不仅可以改善其力学性能还可以改善其破坏形式。
-
关键词:
- 纤维增强复材约束混凝土 /
- 短切纤维 /
- 力学性能 /
- 破坏形式
Abstract: To confine concrete with fiber-reinforced polymer (FRP) can greatly improve the mechanical properties of concrete, which has been used in some application. However, the brittle failure of concrete confined with FRP restricted its application in some fields. To solve the problem, chopped basalt fiber (BF) was mixed to concrete while confining concrete with basalt fiber-reinforced polymer (BFRP) composites. By changing the number of BFRP layers and the volume content of BF, the mechanical properties of basalt-fiber-reinforced concrete confined with BFRP were studied experimentally. The results showed that the compressive strength and the maximum flexural resistance of the concrete increased with the increase of the number of BFRP layers, and the addition of BF could not only improve the strength of concrete but also the toughness of the concrete, changing the failure mode from brittle failure to plastic failure. The best performances of BF concrete confined with BFRP were at the BF content of 0.1%. Therefore, the addition of BF to concrete confined with BFRP could not only improve its mechanical properties but also its failure mode.-
Key words:
- concrete confined with FRP /
- chopped fiber /
- mechanical property /
- failure mode
-
KARIMI K, TAIT M J, EL-DAKHAKHNI W W. Testing and,Modeling of a Novel FRP-Encased Steel-Concrete Composite Column[J]. Composite Structures, 2011, 93(5):1463-1473. MIRMIRAN A, SHAHAWY M. A New Concrete-Filled Hollow FRP Composite Column[J]. Composites Part B:Engineering, 1996, 27(3):263-268. 滕锦光,李荣,顾磊. FRP加固混凝土结构[M]. 北京:中国建筑工业出版社, 2005. 滕锦光.新材料组合结构[J].土木工程学报,2018,51(12):1-11. BERTHET J F, FERRIER E, HAMELIN P. Compressive Behavior of Concrete Externally Confined by Composite Jackets. Part A:Experimental Study[J]. Construction and Building Materials, 2005, 19(3):223-232. DAVOL A, BURGUENO R, SEIBLE F. Flexural Behavior of Circular Concrete Filled FRP Shells[J]. Journal of Structural Engineering, 2001, 127(7):810-817. AMIR Z F, SAMI H R. Flexural Behavior of Concrete-Filled Fiber-Reinforced Polymer Circular Tubes[J]. Journal of Composites for Construction, 2002, 6(2):123-132. MOHAMED M M, MASMOUDI M. Flexural Strength and Behavior of Steel and FRP-Reinforced Concrete-Filled FRP Tube Beams[J]. Engineering Structures, 2010, 32(11):3789-3800. 漆贵海,彭小芹,叶浩文,等. 聚丙烯纤维对超高强混凝土断裂特性的影响[J]. 建筑材料学报, 2015, 18(3):487-492. JOHNSTON C D. Fiber-Reinforced Cements and Concretes[M]. New York:Gordon and Breach Science Publishers, 2001. 廉杰,杨勇新,杨萌,等. 短切玄武岩纤维增强混凝土力学性能的试验研究[J]. 工业建筑, 2007, 37(6):8-10. 张兰芳, 尹玉龙, 刘晶伟, 等. 玄武岩纤维增强混凝土力学性能的研究[J]. 硅酸盐通报, 2014,33(11):74-77. 佟钰,田鑫,朱长军,等. 短切碳纤维混凝土的力学强度实验与分析[J]. 硅酸盐通报,2015, 34(8):2281-2285,2297. 邢正能,何庆芝. 工程断裂力学[M]. 北京:北京航空航天大学出版社, 2012.
点击查看大图
计量
- 文章访问数: 67
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0