CALCULATION ON BEARING CAPACITY OF 7075 HIGH-STRENGTH ALUMINUM ALLOY TUBULAR CONFINED CONCRETE COLUMN UNDER AXIAL COMPRESSION
-
摘要: 高强铝合金由于具有耐腐蚀、强度高、延性好等优点,在大型基础设施工程中具有十分广阔的应用前景。在对比分析钢管约束混凝土柱轴压承载力常用计算理论的基础上,提出了铝合金管约束混凝土柱承载力计算方法,应用有限元程序ABAQUS对7075高强铝合金管约束混凝土柱的轴压性能进行了数值模拟计算,并将有限元模拟计算结果与理论分析结果进行了对比。研究结果表明:欧洲标准(EC4)没有考虑钢管对混凝土的约束作用,故所得计算承载力值偏于安全;“统一理论”矩形钢管计算式并不适用于铝合金约束混凝土矩形柱;而按DL/T 5085-1999《钢-混凝土组合结构设计规程》和GJB 4142-2000《战时军港抢修早强型组合结构技术规程》所得的铝合金管约束混凝土柱承载力比有限元模拟值仅高出4%左右,计算结果与理论分析吻合较好。最后基于DL/T 5085-1999和GJB 4142-2000,以约束效应系数为参数,提出了铝合金管约束混凝土柱轴压承载力计算方法。Abstract: High-strength aluminum alloy has great application prospects in large-scale infrastructure projects due to its corrosion resistance, high strength and good ductility. In this paper, based on the comparative analysis of the commonly used calculation theory of bearing capacity of confined concrete columns under axial compression, the calculation method of bearing capacity of aluminum alloy tubular confined concrete columns was proposed. Then,the finite element model of 7075 high-strength aluminum alloy tubular confined concrete column under axial compression was established by ABAQUS. The finite element simulation results were compared with the calculation results based on the existing experimental results of aluminum alloy tubular confined concrete column. The results showed that the Eurocode 4 did not take the restraint factor of steel pipe on concrete into account, which led to the calculated result biased towards a safe value. The "unified theory" rectangular steel tube calculation formula did not suitable for aluminum alloy confined concrete rectangular column. According to Code for Design of Steel-Concrete composite Structure (DL/T 5085-1999) and Technical specifications for Early-Strength Model Composite Structure Used for Nary Port Emergency Repair in Wartime (GJB 4142-2000), however, the obtained bearing capacity of aluminum alloy tubular confined concrete column was only about 4 percent higher than the finite element simulation value which indicated the finite element simulation results were consistent with the test results. Finally, based on DL/T code and GJB code while treating the constraint effect coefficient as the parameter, the calculation method of axial compressive capacity of concrete column restrained by aluminum alloy tube was proposed.
-
韩林海.钢管混凝土结构:理论与实践[M].2版.北京:科学出版社, 2007:106-110. AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings[S]. Chicago:American Institute of Steel Construction, Inc., 1994. AIJ. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures[S]. Tokyo:Architectural Institute of Japan, 1997. Eurocode 4. Design of Steel and Concrete Structures, Part1.1, General Rules and Rules doe Building.DD ENV 1994-1-1:1996[S]. London:British London Standards Institution, W1A2BS.2004. 中华人民共和国国家经济贸易委员会.钢-混凝土组合结构设计规程:DL/T 5085-1999[S].北京:中国电力出版社, 1999. 解放军总后勤部.战时军港抢修早强型组合结构技术规程:GJB 4142-2000[S].北京:总装备部军标出版社, 2001. 钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社, 2003. 钟善桐.钢管混凝土统一理论:研究与应用[M]. 北京:清华大学出版社, 2006. 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社, 2003. 石永久,程明,王元清.铝合金在建筑结构中的应用与研究[J].建筑科学, 2005, 21(6):7-11. 沈祖炎,郭小农,李元齐.铝合金结构研究现状简述[J].建筑结构学报, 2007, 28(6):100-109. 马欣伯,张素梅.欧洲Eurocode 4(94)关于圆钢管混凝土构件承载力设计方法介绍[J].工业建筑, 2004,34(2):65-68,90. 查晓雄,余敏,黎玉婷,等.实空心钢管混凝土轴压承载力的统一理论和公式[J].建筑钢结构进展, 2011, 13(1):1-7. 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2011. 韩林海.钢管混凝土结构[M]. 北京:科学出版社, 2000. 韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报, 2001, 34(4):22-31. 韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报, 2001, 34(2):17-25. HOGNESTAD E. Concrete Stress Distribution in Ultimate Strength Design[J]. ACI Structural Journal, 1955(4):455-479. STEINHARD O.Aluminum Constructions in Civil Engineering[J].Aluminum, 1971,47:131-139. 宫永丽.常用金属管混凝土柱力学性能的试验和理论研究[D].哈尔滨:哈尔滨工业大学, 2011. 查晓雄,宫永丽.新型金属管混凝土柱力学性能研究I-轴压短柱强度承载力的研究[J].建筑钢结构进展, 2012, 14(3):12-35.
点击查看大图
计量
- 文章访问数: 121
- HTML全文浏览量: 16
- PDF下载量: 0
- 被引次数: 0