EXPERIMENTAL STUDY ON BOND PROPERTIES BETWEEN RUBBER CONCRETE AND REBARS IN THE FREEZE-THAW ENVIRONMENT
-
摘要: 为掌握冻融环境下橡胶混凝土与钢筋的黏结性能,将钢筋开槽后交错内贴应变片,合拢后埋入橡胶混凝土立方体试件,经快速冻融后进行中心拉拔试验,研究橡胶掺量和冻融循环次数对荷载-滑移曲线、锚固段钢筋应变情况、锚固段黏结应力影响。结果表明:橡胶混凝土与钢筋间的黏结破坏过程可分为微滑移、内裂滑移、加速滑移、滑移稳定扩展、滑移软化5个阶段。在冻融循环作用下,随着拉拔荷载的增大,各掺量橡胶混凝土拔出试件锚固段各点的钢筋应变增长幅度比较均匀,表明橡胶混凝土具有良好的抗冻性能。橡胶掺量不超过10%时,冻融环境下橡胶混凝土与钢筋的黏结锚固性能变化较小,峰值滑移较于普通混凝土的降低约6%。随着冻融循环次数的增加,橡胶混凝土试件的黏结应力整体分布较为均匀,荷载传递能力良好。Abstract: To understand the bond performances between concrete mixed with rubber and rebars in the freeze-thaw environment, rebars were slotted and then strain gauges were stuck crosswise on the groove surface, finaly, the rebars were closed and embedded in the rubber-concrete cubes. After being subjected to rapid freeze-thaw, the central pull-out tests were conducted to study the effect of rubber content and freeze-thaw cycles on load-slip curves, rebar strain in effective anchorage length and bond stress in effective length. The results showed that the bond-failure process could be divided into five stages:micro slip, internal crack slip, acceleration slip, slip stable development and slip softening. Under the action of freeze-thaw cycles, with the increase of pull-out loads, the strain of rebars at each point in the anchorage length with the different rubber content increased more evenly, which indicated that concrete mixed with rubber had good frost resistance. When the rubber content was not more than 10%, the change of bond performances between concrete and rebars in the freeze-thaw environment was small, and the peak slip reduced about 6% than that of ordinary concrete. With the increase of freeze-thaw cycles, the overall distribution of bond stress of concrete mixed with rubber was more uniform, and the load transfer capacity was good.
-
Key words:
- freeze-thaw /
- rubber concrete /
- rebar /
- bond-slip
-
[1] 未可. 再回首:两会"聚焦"废旧轮胎再利用[J]. 中国轮胎资源综合利用, 2017(3):13-14. [2] 中华人民共和国商务部.中国再生资源回收行业发展报告2017[J]. 资源再生, 2017(5):16-25. [3] 刘建伟, 张脩, 申俊敏, 等. 水泥混凝土路面国内外现状和发展新对策[J]. 中外公路, 2016, 36(4):73-77. [4] 梅大鹏. 废旧轮胎带道路工程中的应用[J]. 中国轮胎资源综合利用, 2017(8):31-34. [5] 程培峰, 魏玉伟, 赵倩倩, 等. 季冻区水泥路面技术状况的调查研究[J]. 低温建筑技术, 2017, 39(8):154-157. [6] 郑山锁, 裴培, 张艺欣, 等. 钢筋混凝土黏结滑移研究综述[J]. 材料导报, 2018, 32(23):4182-4191. [7] 冀晓东, 宋玉普. 冻融循环后光圆钢筋与混凝土黏结性能退化机理研究[J]. 建筑结构学报, 2011, 32(1):70-74. [8] 袁文革. 冻融后不同强度混凝土与钢筋黏结性能影响[J]. 低温建筑技术, 2011, 33(12):125-126. [9] 安新正, 易成, 王小学, 等. 冻融后钢筋再生混凝土黏结性能研究[J]. 实验力学, 2013, 28(2):227-234. [10] 郭靳时, 邰爽. 冻融下钢筋混凝土黏结性能的试验研究[J]. 低温建筑技术, 2016, 38(2):51-53. [11] 牛建刚, 左付亮, 郝吉, 等. 冻融环境下钢筋与粉煤灰混凝土的黏结承载力[J]. 硅酸盐通报, 2017, 36(11):3619-3624. [12] 赵文兰, 姚志斌, 于秋波, 等. 轻质混凝土与变形钢筋黏结锚固性能试验研究[J]. 建筑结构, 2019, 49(4):70-75. [13] 周子健, 霍静思, 李智. 高温下钢筋与混凝土黏结性能试验与分析[J]. 建筑结构, 2019, 49(10):76-80. [14] 吉林省交通厅. 公路工程抗冻设计与施工技术指南[M]. 北京:人民交通出版社, 2006.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 11
- PDF下载量: 1
- 被引次数: 0