CALCULATION MODEL OF EARLY CARBONATION DEPTH OF MINERAL ADMIXTURE CONCRETE
-
摘要: 通过自然暴露环境下多种掺料混凝土(掺粉煤灰、矿粉、煤矸石)的碳化试验,分析碳化时间、养护时间对掺料混凝土早期碳化深度发展规律的影响。研究结果表明:掺料混凝土的碳化深度在浇筑后的90 d内发展极快,90~180 d由于回碱现象碳化深度发展较慢,180 d后碳化深度继续发展并趋于稳定;掺料混凝土的碳化深度与其碳化时间的平方根呈线性关系;混凝土早期碳化速度随养护时间的延长而减慢,单掺、双掺、三掺混凝土的减慢程度依次减弱。结合前期研究成果,考虑掺料种类及掺量、养护时间、碳化时间、碳化部位、水胶比等因素建立了掺料混凝土早期碳化深度的计算模型,与其他试验结果对比验证了模型的适用性。Abstract: Based on the carbonation test of concrete with various admixtures (fly ash, mineral powder and gangue) in natural exposure environment, the influence of carbonation time and curing time on the early carbonation depth of concrete with admixtures was analyzed. Results showed that the carbonation depth of concrete with admixtures developed very fast within 90 days after pouring, while tended to slowly from 90 days to 180 days due to the phenomenon of alkali return, and the carbonation depth of concrete with admixtures continued to develop and tended to be stable after 180 days. The carbonation depth of concrete with admixtures had a linear relationship with the square root of carbonation time. The early carbonation speed of concrete slowed down with the extension of curing time, and the slowing down degree of concrete with single, double and triple admixtures weakened in turn. Combined with the previous research results, considering the type and amount of admixtures, curing time, carbonation time, carbonation position, water-binder ratio and other factors, the calculation model of early carbonation depth of concrete with admixtures was established, and the applicability of the model was verified by comparing with test results from others.
-
Key words:
- mineral admixture /
- concrete /
- carbonation depth /
- curing time /
- carbonation time /
- calculation model
-
田稳苓,常翔宇,王浩宇,等.混凝土裂缝处碳化深度计算模型[J].土木建筑与环境工程,2017(5):75-82. 宋华,牛荻涛,李春晖.矿物掺合料混凝土碳化性能试验研究[J].硅酸盐学报,2009,37(12):2066-2070. LI G, DONG L, BAI Z, et al. Predicting Carbonation Depth for Concrete with Organic Film Coatings Combined with Ageing Effects[J]. Construction and Building Materials, 2017, 142:59-65. LI Z G, LI S. Carbonation Resistance of Fly Ash and Blast Furnace Slag Based Geopolymer Concrete[J]. Construction & Building Materials, 2018, 163:668-680. 牛建刚,张缜,翟海涛.粉煤灰混凝土碳化理论模型参数研究[J].混凝土,2011(4):48-50. 胡晓鹏,牛荻涛,张永利.粉煤灰混凝土早期碳化规律研究[J].西安建筑科技大学学报(自然科学版),2012,44(6):805-810. 阿茹罕,阎培渝.不同粉煤灰掺量混凝土的碳化特性[J].硅酸盐学报,2011,39(1):7-12. 王崇革,李强.基于扩散理论的双掺混凝土碳化模型转换研究[J].混凝土,2013(1):55-57. 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009[S].北京:中国建筑工业出版社,2009. LOO Y, CHIN H, TAM M S, et al. Carbonation Prediction Model for Accelerated Carbonation Testing of Concrete[J].Magazine of Concrete Research, 1994, 88(4):191-200. YE Q. Influence of Early Age Wet Curing Time, Clinker and CaO Content on the Carbonation Resistance of C40 Ordinary Concrete[J]. Advanced Materials Research, 2011, 311-313:1894-1900. ZHANG D, SHAO Y. Early Age Carbonation Curing for Precast Reinforced Concretes[J]. Construction & Building Materials, 2016, 113:134-143. 中华人民共和国住房和城乡建设部.既有混凝土结构耐久性评定标准:GB/T 51355-2019[S].北京:中国建筑工业出版社,2019. PAPADAKIS V G, FARDIS M N, VAYENAS C G. Effect of Composition,Environmental Factors and Cement-Lime Mortar Coating on Concrete Carbonation[J]. Materials and Structures, 1992, 25(5):293-304. CHANG C F, CHEN J W. The Experimental Investigation of Concrete Carbonation Depth[J]. Cement Concrete & Research, 2006, 36(9):1760-1767. 牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2002:25-32. 胡建军.掺粉煤灰和矿渣粉混凝土的碳化行为及其影响因素的研究[D].北京:清华大学,2010. 贾耀东.大掺量矿物掺合料混凝土的碳化特性研究[D].北京:清华大学,2010.
点击查看大图
计量
- 文章访问数: 97
- HTML全文浏览量: 20
- PDF下载量: 3
- 被引次数: 0