RESEARCH ON THE MULTI-FACTOR AND MULTI-OBJECTIVE OPTIMIZATION METHOD FOR THE DESIGN PARAMETERS OF TRANSPARENT ENVELOPE OF MACHINE WORKSHOP
-
摘要: 机械加工厂房透明围护结构设计优化问题涉及因素较多,这些因素对室内光环境、热环境及能耗的影响又往往是相互矛盾、相互制约的,因此机械加工厂房透明围护结构设计优化问题是典型的多因素、多目标优化问题,应用常见的单因素、单目标优化方法进行优化分析时,往往存在顾此失彼的问题。采用优化决策领域的多目标遗传算法进行透明围护结构设计参数的优化,通过Matlab与EnergyPlus的交互,求解得到多目标情形下透明围护结构设计参数的Pareto最优方案集,分析在多目标情形下各设计参数的取值特点,对比单目标最优方案与多目标Pareto最优方案的性能,展示了对透明围护结构设计参数进行多目标优化的意义和必要性,所提多因素、多目标优化决策方法能够为建筑设计人员在工业建筑方案设计阶段提供帮助。Abstract: There are many parameters in the design process of the transparent envelope of machine workshop, and the influences of these parameters on the indoor light environment, thermal environment and energy consumption are often contradictory and mutually restricted. Therefore, the design optimization of the transparent envelope parameters of machine workshop is a typical multi-factor and multi-objective optimization problem. The common single factor and single objective optimization method are mostly ineffective for considering one objective while neglecting another. The multi-objective genetic algorithm was used to optimize the design parameters of the transparent envelope. Through the interaction between Matlab and EnergyPlus, the Pareto-optimal schemes of design parameters of transparent envelope were obtained. The value distribution characteristics of the design parameters were analyzed in the Pareto optimal scheme set, and the performance of single objective optimal scheme and multi-objective Pareto optimal scheme were compared. The results showed that the significance and necessity of multi-objective optimization for the design optimization of the transparent envelop parameters. The proposed multi-objective optimization decision method with multi factors can be helpful for architectural designers in the design stage of the industrial building.
-
Key words:
- multi-factor /
- multi-objective /
- transparent envelope /
- optimization /
- multi-objective genetic algorithm
-
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2017. 中华人民共和国住房和城乡建设部. 工业建筑节能设计统一标准:GB 51245-2017[S]. 北京:中国计划出版社, 2017. 王彦. 某制药厂房的空调系统模拟及能耗分析[D]. 杭州:浙江工业大学, 2017. LEE J W, JUNG H J, PARK J Y, et al. Optimization of Building Window System in Asian Regions by Analyzing Solar Heat Gain and Daylighting Elements[J]. Renewable Energy, 2013, 50:522-531. SUSOROVA I, TABIBZADEH M, RAHMAN A, et al. The Effect of Geometry Factors on Fenestration Energy Performance and Energy Savings in Office Buildings[J]. Energy and Buildings, 2013, 57:6-13. MA P, WANG L, GUO N. Maximum Window-to-Wall Ratio of a Thermally Autonomous Building as a Function of Envelope U-Value and Ambient Temperature Amplitude[J]. Applied Energy, 2015, 146:84-91. GAN V J L, WONG H K, TSE K T, et al. Simulation-Based Evolutionary Optimization for Energy-Efficient Layout Plan Design of High-Rise Residential Buildings[J]. Journal of Cleaner Production, 2019, 231:1375-1388. TIAN C, CHEN T, YANG H, et al. A Generalized Window Energy Rating System for Typical Office Buildings[J]. Solar Energy, 2010, 84(7):1232-1243. WANG L, MA P, HU E, et al. A Study of Building Envelope and Thermal Mass Requirements for Achieving Thermal Autonomy in an Office Building[J]. Energy and Buildings, 2014, 78:79-88. 黄建恩,吕恒林,冯伟,等. 既有居住建筑围护结构节能改造热工性能优化[J]. 土木建筑与环境工程, 2013, 35(5):118-124. 陈天丽,渠滔,白宪臣. 既有中小学校建筑墙体外围护结构的节能改造技术[J]. 河南大学学报(自然科学版), 2010, 40(4):436-440. 赵西平,张志彬. 寒冷地区高校教学楼围护结构优化改造设计:以兰州交通大学电信综合教学楼为例[J]. 西安建筑科技大学学报(自然科学版), 2012(5):651-656. ASADI S, MOSTAVI E, BOUSSAA D, et al. Building Energy Model Calibration Using Automated Optimization-Based Algorithm[J]. Energy and Buildings, 2019, 198:106-114. 王帝. 重庆地区电子装配厂房热环境优化设计研究[D]. 重庆:重庆大学, 2015. 翟颖妮,王怡,孟晓静,等. 机械厂房围护结构设计因素对能耗影响研究[J]. 建筑节能, 2019, 47(6):132-138. WANG Q, HU Y, HAO J, et al. Exploring the Influences of Green Industrial Building on the Energy Consumption of Industrial Enterprises:A Case Study of Chinese Cigarette Manufactures[J]. Journal of Cleaner Production, 2019, 231(9):370-385. CAMARA M V O, RIBEIRO G M, TOSTA M D C R. A Pareto Optimal Study for the Multi-Objective Oil Platform Location Problem with NSGA-II[J]. Journal of Petroleum Science and Engineering, 2018, 169:258-268. ANSI/ASHRAE.Thernal Environmental Conditions for Human Occupany:ANSI/ASHRAE Standard 55-2017[S].ASHRAE:Tullie Cirde, 2017.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 11
- PDF下载量: 7
- 被引次数: 0