EXPERIMENTAL RESENRCH ON CRYOGENIC TEMPERATURE TENSILE STRENGTH OF CONCRETE UNDER COUPLING ACTION OF KEY INFLUENCING FACTORS
-
摘要: 通过对不同的含水率(2.0%~5.5%)及强度等级(C30、C40和C50)混凝土进行各种低温(-40~-180℃)作用下劈裂抗拉试验,探讨作用低温、含水率和强度等级等3个关键因素对混凝土抗拉强度的影响,并拟合出它们的耦合作用关系。试验结果表明:强度等级和含水率越高的混凝土,温度越低时其破坏面越平整、粗骨料被劈裂也更明显。其他条件相同情况下,混凝土的抗拉强度随含水率的增加而升高,随温度的降低呈现出先增长后趋于稳定,甚至更高的含水率时会出现下降的变化趋势;而强度等级对混凝土低温抗拉强度的影响则相对较小,且含水率较高时强度等级越高的混凝土劈裂抗拉强度提升幅度越小。试验结果及其拟合的含有作用的低温、混凝土的含水率、强度等级等3个关键因素的混凝土低温劈裂抗拉强度表达式可为混凝土超低温环境下相关理论的完善以及超低温混凝土结构的设计和安全评估提供参考。Abstract: The effects of three key factors, including cryogenic temperature, concrete water content and strength grade, on concrete tensile strength were discussed through the splitting tensile experiment under cryogenic temperatures from -40 ℃ to -180 ℃ for the concrete with different water contents (2.0% to 5.5%) and strength grades (C30, C40 and C50), and the corresponding coupling action relationship was also fitted out. From the test results it was shown that the higher the strength grade and water content of concrete, and the lower the cryogenic temperature, the more flat the failure surface and the more obvious the splitting phenomenon of coarse aggregates located in the failure surface. The tensile strength of concrete increased with the increase of water content, and decreased with the decrease in cryogenic temperature at same other conditions, and then tended to be stable. However, the influence of concrete strength grade on its cryogenic temperature tensile strength was relatively small, and the higher the water content, the smaller the increase in splitting tensile strength for the concrete with higher strength grades. These test results and the expressions of concrete splitting tensile strength at cryogenic temperature, including three key factors of cryogenic temperature, water content and strength grade, could be used as references for the improvement of relevant theories and the design and safety evaluation of ultralow temperature concrete structures.
-
Key words:
- concrete /
- cryogenic temperature /
- water content /
- strength grade /
- tensile strength
-
贾承造,张永峰,赵霞. 中国天然气工业发展前景与挑战[J]. 天然气工业,2014,34(2):8-18. MIURA T. The Properties of Concrete at Very Low Temperatures[J]. Materials and Structures, 1989, 22(4):243-254. 时旭东,田佳伦,钱磊,等. 经历常温降温及再回温的混凝土受力性能试验研究[J]. 工业建筑,2019,49(7):119-123,128. LEE G C, SHIH T S, CHANG K C. Mechanical Properties of Concrete at Low Temperature[J]. Journal of Cold Regions Engineering, 1988, 2(1):13-24. KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A Review of Concrete Properties at Cryogenic Temperatures:Towards Direct LNG Containment[J]. Construction & Building Materials, 2013, 47(10):760-770. MARSHALL A L. Cryogenic Concrete[J]. Cryogenics, 1982,22(11):555-565. YAMANA S, KASAMI H, OKUNO T. Properties of Concrete at Very Low Temperatures[J]. ACI Special Publication, 1978:55-56. 时旭东,居易,马驰,等. 混凝土低温受拉强度试验研究[J]. 建筑结构,2016,46(13):86-89. 王传星,谢剑,李会杰. 低温环境下混凝土性能的试验研究[J]. 工程力学,2011,28(增刊2):182-186. 时旭东,居易,郑建华,等.混凝土低温受压强度试验研究[J].建筑结构,2014,44(5):29-33.
点击查看大图
计量
- 文章访问数: 168
- HTML全文浏览量: 23
- PDF下载量: 3
- 被引次数: 0