NUMERICAL SIMULATION AND ANALYSIS OF STRONG WIND CLIMBING EFFECT ON ISLAND TERRAIN
-
摘要: 针对海岛地形下强风爬坡效应对输电塔和跨海大桥的不利影响,基于计算流体力学软件,以浙江沿海一座具有塔架工程建设背景的岛屿为研究对象,采用数值仿真的手段研究了不同坡度海岛的竖向风速分布规律,并对坡顶区域竖向风速进行拟合。研究发现:最大竖向风速出现在迎风坡约3/5高度处;距海岛顶部150 m高度范围内,坡顶竖向风速随坡度的分布近似满足指数型函数,当超过该高度时,竖向风速随坡度基本不变;不同坡度工况下,坡顶以上最大竖向风速出现在距坡顶50~200 m高度范围内。Abstract: Considering the adverse effects of strong wind climbing on transmission towers and sea-crossing bridges under island terrain, an island with the tower engineering construction background along the Zhejiang coast was studied based on Computational Fluid Dynamics. The vertical wind speed distribution of islands with different slopes was studied by numerical simulation, and the vertical wind speed at the top of the slope was fitted. The results showed that the maximum vertical wind speed was at about 3/5 height of the windward slope. Within the height range of 150 m from the measured point to the top of the island, the distribution of the vertical wind speed on the top of the slope with the gradient approximated to an exponential function, and when it exceeded this range, the vertical wind speed remainsed unchanged with the gradient. Under different slope conditions, the maximum vertical wind speed above the top of the slope was in the range of 50~200 m from the top of the slope.
-
[1] BOWEN J A, LINDLEY D. A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground Over Various Escarpments Shapes[J]. Boundary-Layer Meteorology, 1977, 12(3):259-271. [2] JENSEN N O, PETERSON E W. On the Escarpment Wind Profile[J]. Quarterly Journal of the Royal Meteorological Society, 1978, 104(441):719-728. [3] CAO S Y, TAMURA T. Effects of Roughness Blocks on Atmospheric Boundary Layer Flow Over a Two-Dimensional Low Hill with/Without Sudden Roughness Change[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(8):679-695. [4] JACKSON P S, HUNT J C R. Turbulent Wind Flow Over a Low Hill[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101:929-955. [5] 高静, 洪冠新. 复杂地形低空三维风场数值仿真方法[J]. 航空计算技术, 2006(4):108-111. [6] 李磊, 张立杰, 张宁, 等. FLUENT在复杂地形风场精细模拟中的应用研究[J].高原气象, 2010, 29(3):621-628. [7] ISHIHARA T, HIBI K, OIKAWA S. A Wind Tunnel Study of Turbulent Flow Over a Three-Dimensional Steep Hill[J]. 1999, 83(1):95-107. [8] 李正良, 孙毅, 魏奇科, 等. 山地平均风加速效应数值模拟[J]. 工程力学, 2010(7):32-37. [9] 沈国辉, 姚旦, 楼文娟, 等. 单山和双山风场特征的CFD数值模拟[J].湖南大学学报(自然科学版), 2016, 43(1):37-44. [10] 楼文娟, 梁洪超, 李正昊, 等. 典型山地地形竖向风速分布特征[J]. 空气动力学学报, 2018, 36(5):791-797. [11] 郭健,孙炳楠.钢管塔中管-板连接节点的破坏全过程分析[J]. 工业建筑, 2006, 36(12):83-85,104. [12] WENG W S, TAYLOR P A, WALMSLEY J L. Guidelines for Airflow over Complex Terrain:Model Developments[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2000, 86(2):169-186. [13] 王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社, 2004. [14] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012. [15] 张相庭. 结构风工程[M]. 北京:中国建筑工业出版社, 2006. [16] FRANKE J,HIRSCH C,JENSEN A G, et al. Recommendations on the Use of CFD in Wind Engineering[C]//Proceedings of the International Conference Urban Wind Engineering and Building Aerodynamics. Belgium:von Karman Institute, Sint-Genesius-Rode, 2004.
点击查看大图
计量
- 文章访问数: 91
- HTML全文浏览量: 7
- PDF下载量: 3
- 被引次数: 0