Research on Size Effect of Flexural Properties of High-Strength Reinforced Concrete Columns
-
摘要: 随着混凝土强度的提高,柱受弯极限承载力的尺寸效应更加明显。因此,高强混凝土柱受弯屈服承载力尺寸效应需要进一步的确认。为此,开展了理论剪跨比为4的高强混凝土柱在轴压和单调水平荷载作用下的受弯性能试验。试件的剪跨比、轴压比和配箍率一致,几何尺寸相似比为3∶5∶7。结果表明:柱均为弯曲破坏,并且大尺寸柱保护层混凝土的劈裂效应可能是尺寸效应产生的部分原因;大尺寸柱的相对名义弯曲应力、名义转角、P-Δ效应及受弯屈服承载力的安全储备系数和局部安全储备系数与小尺寸柱相比均有所降低,其存在一定的尺寸效应,并且随着混凝土强度的提高,相对名义弯曲应力和受弯屈服承载力安全储备系数的尺寸效应更加明显;基于试验结果和Bažant的Type2类型尺寸效应模型,提出了考虑尺寸效应的受弯屈服承载力计算方法,使大小尺寸构件的安全储备系数趋于一致,进而保证了大尺寸柱受弯屈服承载力计算的安全性。Abstract: It has been shown that as concrete strength increases, the size effect of ultimate flexural capacity becomes more pronounced in columns. However, the size effect of flexural capacity requires further confirmation for high-strength concrete columns. For this purpose, the high-strength concrete columns with a theoretical shear-span ratio of 4 were subjected to axial and monotonic loading in this study. The shear-span ratio, axial load ratio, and volume ratio of stirrup were consistent. The geometric similarity ratio of components was 3∶5∶7. The experimental results indicated that the failure mode of columns was flexural failure, and the splitting effect of concrete cover for large size columns might be a part reason of size effect. Meanwhile, the relative nominal flexural strength, nominal angle of rotation, P-Δ effect, and safety factors and local safety factors for flexural capacity decreased as section size increased, suggesting that size effect existed. Moreover, the size effect of relative nominal flexural strength and safety factors of flexural capacity was stronger for high-strength columns than for conventional concrete columns. In addition, based on the test results and Bažant’s Type 2 model, the calculation method of flexural capacity was modified to provide a constant factor of safety regardless of column size, indicating that the fluexural capacity was safer for large size columns.
-
Key words:
- size effect /
- high-strength concrete columns /
- flexural capacity /
- safety factors /
- local safety factors
-
[1] AZIZINAMINI A, KUSKA S, BRUNGARDT P, et al. Seismic behavior of square high-strength concrete columns[J]. ACI Structural Journal, 1994, 91(3):336-345. [2] WANG D Y, WANG Z Y, SMITH S T, et al. Seismic performance of CFRP-confined circular high-strength concrete columns with high axial compression ratio[J]. Construction and Building Materials, 2017, 134:91-103. [3] JOHN H, THOMSEN I V, JOHN W W. Lateral load behavior of reinforced concrete columns constructured using high-strength materials[J]. ACI Structural Journal, 1994, 91(5):605-615. [4] HWANG S K, YUN H D. Effects of transverse reinforcement on flexural behaviour of high strength concrete columns[J]. Engineering Structures, 2004, 26:1-12. [5] MIRZA S A, AZIZINMINI A, ADEBAR P E, et al. High-strength concrete columns:state-of-the-art[J]. ACI Structural Journal, 1997, 94(3):323-335. [6] LEGERON F, PAULTRE P. Behavior of high-strength concrete columns under cyclic flexure and constant axial load[J]. ACI Structural Journal, 2000, 97(14):591-601. [7] 肖岩, 伍云天, 尚守平, 等. 高强混凝土柱抗震性能的足尺试验研究及理论分析[J]. 东南大学学报(自然科学版), 2002, 32(5):746-749. [8] 刘伯权, 白国良, 张国军. 高轴压比高强混凝土框架柱抗震性能试验研究[J]. 土木工程学报, 2005, 38(1):45-50. [9] 李振宝, 解咏平, 杜修力, 等. 单调水平荷载作用下钢筋混凝土柱受弯性能尺寸效应试验研究[J]. 建筑结构学报, 2013, 34(12):77-85. [10] 解咏平, 李振宝, 杜修力, 等. 低周反复荷载作用下钢筋混凝土柱抗震性能尺寸效应试验研究[J]. 建筑结构学报, 2013, 34(12):86-93. [11] LI Z B, YU C Y, XIE Y P, et al. Size effect on seismic performance of high-strength reinforced concrete columns subjected to monotonic and cyclic loading[J]. Engineering Structures, 2019, 183:206-219. [12] YU C Y, MA H, XIE Y P, et al. Size effect on seismic performance of high-strength reinforced concrete columns with different shear span to depth ratios[J]. Mathematical Problems in Engineering, 2018, 17:1-18. [13] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1921, 221(2):163-198. [14] WEIBULL W. Phenomenon of rupture in solids[J]. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153:1-55. [15] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(2):293-297. [16] BAŽANT Z P, CHEN E P. Scaling of structural failure[J]. Advances in Mechanics, 1999, 50(10):593-627. [17] BAŽANT Z P. Scaling of structural strength[M]. Oxford:Elsevier, 2005:6-29. [18] BAŽANT Z P. Size effect in blunt fracture:concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535. [19] BAŽANT Z P, YU Q. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics, 2009, 135(2):78-84. [20] HOOVER C G, BAZANT Z P. Universal size-shape effect law based on comprehensive concrete fracture tests[J]. Journal of Engineering Mechanics, 2014, 140(3):473-479. [21] 杜修力, 金浏, 李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ):材料层次[J]. 土木工程学报, 2017(9):32-49. [22] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验标准方法:GB/T 50081-2002[S]. 北京:中国建筑工业出版社, 2002. [23] 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社, 2010. [24] 中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101-2015[S]. 北京:中国建筑工业出版社, 2015. [25] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2010. [26] BAŽANT Z P, YU Q. Size effect in compression fracture:splitting crack band propagation[J]. Journal of Engineering Mechanics, 1997, 123(2):162-172.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 29
- PDF下载量: 4
- 被引次数: 0