EXPERIMENTAL RESEARCH ON IMPACT COMPRESSION PERFORMANCE OF BASALT FIBER REINFORCED CEMENTITIOUS COMPOSITES
-
摘要: 利用ϕ50 mm分离式霍普金森压杆(SHPB)装置对玄武岩纤维增强水泥基复合材料(BFRCC)进行冲击压缩试验,通过对3种不同纤维掺量的BFRCC试件在不同应变率下的动态压缩力学性能、吸能性能和韧度指数进行试验研究,结果表明:不同纤维掺量BFRCC的动态抗压强度、破碎状态、韧度系数等均具有明显的应变率效应;相近应变率条件下随着纤维掺量的增加,BFRCC试件的能量吸收呈现上升趋势;随纤维掺量的增加,BFRCC的韧度系数上升速率增大。Abstract: In order to study the dynamic compression mechanical properties of basalt fiber reinforced cementitious composites (BFRCC), different strain rates were applied to three different fiber content BFRCC specimens by using ϕ 50 mm Split Hopkinson Pressure Bar (SHPB) device. Under the dynamic impact compression test, the energy absorption capacity and toughness index of each group of specimens were calculated by the principle of energy conservation. The results showed that the dynamic compressive strength, fracture state and toughness coefficient of cement-based composites with different fiber contents had obvious strain rate effects; with the increase of fiber content,under similar strain rate conditions, the absorbed energy of the specimen showed an upward trend; the toughness coefficient increased with the increase of fiber content.
-
Key words:
- SHPB /
- BFRCC /
- impact compression mechanical properties /
- absorbed energy /
- toughness index
-
LI V C, LEUNG C K Y. Steady State and Multiple Cracking of Short Random Fiber Composites[J]. ASCE J. Eng. Mech., 1992, 188(11):2246-2264. MAALEJ M, LI V C. Flexural/Tensile Strength Ratio in Engineered Cementitious Composites[J]. J. Mater. Civ. Eng., ASCE,1994, 6(4):513-528. 中华人民共和国工业和信息化部.高延性纤维增强水泥基复合材料力学性能试验方法:JC/T 2461-2018[S]. 北京:建材工业出版社,2018. YANG E H, LI V C. Rate Dependence in Engineered Cementitious Composites[C]//In RILEM Workshop on HPFRCC in Structural Applications. Honululu, Hawaii:2005:83-92. YANG E H, LI V C. Tailoring Engineered Cementitious Composites for Impact Resistance[J]. Cem. Concr. Res., 2012, 42(8):1066-1071. MAALEJ M, QUEK S T, ZHANG J. Behaviour of Hybrid-Fiber Engineered Cementitious Composites Subjected to Dynamic Tensile Loading and Projectile Impact[J]. ASCE J. Mater. Civ. Eng., 2005, 17(2):143-152. ZHANG J, MAALEJ M, QUEK S T. Performance of Hybrid-Fibre ECC Blast/Shelter Panels Subjected to Drop Weight Impact[J]. J. Mater. Civ. Eng., ASCE, 2007, 19(10):855-863. MECHTCHERINE V, MILLON O M, BUTTLE M, et al. Mechanical Behaviour of Strain Hardening Cement-Based Composites Under Impact Loading[J]. Cem. Concr. Comp. 2011, 33(1):1-11. SOEK T, ZHANG Y X, ZHANG L C. Impact Resistance of Hybrid-Fiber Engineered Cementitious Composite Panels[J]. Comp. Struct., 2013, 104:320-330. LI V C, MISHRA D K, WU H C. Matrix Design for Pseudo-Strain-Hardening Fibre Reinforced Cementitious Composites[J]. Mater. Struct., 1995, 28(10):586-595. LI V C, WANG S, WU C. Tensile Strain-Hardening Behaviour of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC)[J]. ACI Mater. J., 2001, 98(6):483-492. ZHOU J, QIAN S Z, BELTRAN M G S, et al. Development of Engineered Cementitious Composites with Limestone Powder and Blast Furnace Slag[J]. Mater. Struct., 2010, 43(6):803-814. 高淑玲, 徐世烺. PVA纤维增强水泥基复合材料拉伸特性试验研究[J].大连理工大学学报, 2007, 47(2):233-239. 张君, 公成旭, 居贤春. 高韧性低收缩纤维增强水泥基复合材料特性及应用[J].水利学报, 2011(12):1452-1461. PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on Fiber Hybridization Effect of Engineered Cementitious Composites with Low-and High-Modulus Polymeric Fibers[J]. Constr. Build. Mater., 2016, 112:739-746. 宋嵩. 玄武岩纤维增强高延性水泥基复合材料常温与高温力学性能研究[D].天津:河北工业大学,2019. ZHANG Z X,KOU S Q,JIANG L G,et al. Effects of Loading Rate on Rock Fracture:Fracture Characteristics and Energy Partitioning[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):745-762. 赵光明, 马文伟, 孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性[J]. 岩土力学, 2015, 36(12):3598-3605. FERROG, CARPINTERIA. Effect of Specimen Size on the Dissipated Energy Density in Compression[J]. Journal of Applied Mechanics, 2008, 75(4):699-703. 梁昌玉, 李晓, 吴树仁. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. 岩土力学, 2016, 37(12):3472-3480.
点击查看大图
计量
- 文章访问数: 59
- HTML全文浏览量: 8
- PDF下载量: 2
- 被引次数: 0