EXPERIMENTAL RESEARCH ON BEARING CAPACITY OF PREFABRICATED INVISIBLE BEAMS AND FLOORS AT THE CONSTRUCTION STAGE
-
摘要: 提出一种应用于装配式钢结构的新型楼板。楼板下层为结构层,上层为建筑层,建筑层在装修阶段浇筑,结构层楼板和梁在工厂一体化制作。梁全部隐藏于楼板中,建筑隔墙位置不必与梁对应,使建筑隔墙布置灵活,满足业主建筑功能布局个性化要求。腹板开设孔洞,楼板中管线可以方便地穿越梁,有利于装修阶段管线的个性化布置和安装,同时方便后期的维修和改造。为研究此楼板施工阶段的受力性能,对两块施工阶段的隐形梁和楼板进行了静力性能试验,分析两块楼板的开裂荷载、裂缝发展分布、设计荷载及破坏模式,分析梁的设计承载力,并将有限元分析结果与试验结果进行对比。研究结果表明:隐形梁和楼板在施工阶段具有合理的承载性能,满足施工承载力要求。根据试验结果,针对本文研究的隐形梁和楼板提出了受弯承载力计算方法。Abstract: A new type of floor slab applied to prefabricated steel structures was proposed in the paper. The lower floor is the structural floor and the upper floor is the building floor. The building floor is poured at the decoration stage, and the structural floor and beam are integrally manufactured in the factory. The beams are all hidden in the floor. The position of the partition wall does not have to correspond to the beam, which makes the layout of the partition wall flexible and meets the individual requirements of owner for functional layout. Web openings allows the pipeline in the floor to easily pass through the beam, which is conducive to the personalized layout and installation of the pipeline during the decoration stage, and at the same time facilitates later maintenance and renovation. In order to study the mechanical properties of this floor during construction, static performance tests were performed on two beams and floors during construction. The cracking load, crack development distribution, design load and failure mode of two floors were analyzed. The design bearing capacity of the beam was analyzed, and the results obtained from the finite element analysis were compared with the test results. The results showed that the invisible beams and floors had reasonable bearing capacity during the construction stage and could meet the requirements of construction bearing capacity. Based on the test results, a calculation method for the bending bearing capacity of the invisible beams and floors was proposed.
-
张爱林.工业化装配式多高层钢结构住宅产业化关键问题和发展趋势[J].住宅产业,2016(1):10-14. 张爱林.工业化装配式高层钢结构体系创新、标准规范编制及产业化关键问题[J].工业建筑,2014,44(8):1-6,8. 王伟, 陈以一, 余亚超, 等. 分层装配式支撑钢结构工业化建筑体系[J]. 建筑结构, 2012,42(10):48-52. LIU X C, CUI F Y. Tension-Bend-Shear Capacity of Bolted-Flange Connection for Square Steel Tube Column[J]. Engineering Structure, 2019, 201:439-460. LIU X C, CUI F Y, ZHAN X X, et al. Seismic Performance of Bolted Connection of H-Beam to HSS-Column with Web End-Plate[J]. J Constr Steel Res, 2019(156):167-181. LIU X C, PU S H, ZHANG A L. Performance Analysis and Design on Bolted Connections in Modularized Prefabricated Steel Structures[J]. J Constr Steel Res, 2017(133):360-373. 刘学春,徐路,张冬洁,等. H型钢梁处装配式钢筋桁架楼板纵向连接受力性能试验研究[J]. 工业建筑, 2018, 48(5):54-61. 王元清,石永久,陈宏,等.现代轻钢结构建筑及其在我国的应用[J].建筑结构学报,2002(1):2-8. 王俊,赵基达,胡宗羽.我国建筑工业化发展现状与思考[J].土木工程学报,2016,49(5):1-8. 郝际平,孙晓岭,薛强,等.绿色装配式钢结构建筑体系研究与应用[J].工程力学,2017,34(1):1-13. ALASHKER Y, EL-TAWIL S, SADEK F. Progressive Collapse Resistance of Steel-Concrete Composite Floors[J]. Journal of Architectural Engineering, 2010(10):1187-1196. 聂建国,陈必磊,陈戈,等.钢筋混凝土叠合板的试验研究[J].工业建筑,2003,33(12):43-46,33. 韩菊红,杨建水.钢筋混凝土叠合双向板受冲切性能试验研究[J].工业建筑,2003,33(5):68-70. 赵国辉,孟祥春,张峥.叠合楼板预制部分的结构性能试验研究[J].四川建筑,2014,34(6):229-231. 余泳涛,赵勇,高志强.单缝密拼钢筋混凝土叠合板受弯性能试验研究[J].建筑结构学报,2019(4):29-37. 吴瑞春,孟令帅,杜红凯,等.轻骨料混凝土叠合板受力性能试验研究[J].结构工程师,2017,33(6):103-109. 马兰,陈向荣,蒋路,等.钢筋桁架混凝土叠合楼板试验及有限元分析[J].建筑结构,2013,43(21):54-57, 62. 刘轶,童根树,李文斌,等.钢筋桁架叠合板性能试验和设计方法研究[J].混凝土与水泥制品,2006(2):57-60. 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2010. 周玲,陈明中,陈龙珠.外包混凝土加固轴心受压钢柱中强度折减系数分析[J].建筑技术,2005(2):116-117. 中华人民共和国住房和城乡建设部.混凝土结构试验方法标准:GB/T 50152-2012[S]. 北京:中国建筑工业出版社,2012. 吴迪,武岳.圆孔蜂窝梁的力学性能[J].建筑科学与工程学报,2007(1):47-51. 曾欢艳,张娟文,刘文祥,等.考虑孔高比和距高比蜂窝梁挠度计算简化公式探讨[J].工程建设与设计,2019(18):3-4, 31.
点击查看大图
计量
- 文章访问数: 365
- HTML全文浏览量: 7
- PDF下载量: 5
- 被引次数: 0