RESEARCH ON DAMPING PERFORMANCE OF SUSPENDED COAL BUCKET TMD FOR THERMAL POWER PLANT STRUCTURE
-
摘要: 为验证悬吊煤斗质量调谐阻尼器(TMD)对火电厂结构的减震效果,建立结构有限元模型进行单向和双向地震作用下减震效果对比分析,制作缩尺比例为1∶12的结构试验模型,进行三组不同地震波在三水准地震强度下的双向振动台试验,进行煤斗与楼层固接的常规方案和采用弹性及阻尼元件与楼层连接的悬吊煤斗TMD方案的对比试验,另外,对多遇地震作用下设置悬吊煤斗TMD有无阻尼的减震效果也进行对比试验。结果表明:悬吊煤斗TMD沿结构水平纵向(X向)和横向(Y向)的耦合作用较小,可基于TMD理论对结构的水平纵向和横向分别进行参数优化,优化后的悬吊煤斗TMD对不同水准作用下结构位移控制效果显著,对多遇地震水准下加速度也有良好控制效果,且有阻尼悬吊煤斗TMD结构的位移和加速度减震效果皆优于无阻尼悬吊煤斗TMD结构。Abstract: In order to verify the damping effect of the suspended coal bucket TMD on the structure of the thermal power plant, a structural finite element model was established to compare the damping effects of the one-way and two-way seismic action, and a structural test model with a scale ratio of 1:12 was fabricated. Two-way shaking table test of different seismic waves under three-level earthquake intensity was conducted, and a comparison test of a conventional scheme of fixing the coal bucket and the floor, and a scheme of the hanging coal bucket TMD scheme using elastic and damping elements connected to the floor was performed, in which multiple earthquakes occur. In addition, the comparison test of the damping effect of the suspension coal bucket TMD with or without damping was carried out. The results showed that the coupling effect of the X and Y directions of the hanging coal bucket TMD was small, and it could be independent of the X and Y directions of the structure based on the TMD theory. The parameter optimization was carried out, and the optimized suspension coal bucket TMD had a remarkable effect on the structural displacement control under different levels of action, and had good control effect on the acceleration under multiple earthquake levels, and the displacement and acceleration of the damped suspension coal bucket TMD structure were reduced. The seismic effect was better than that of the undamped suspension coal bucket TMD structure.
-
TANG B J, LI R, LI X Y, et al. An Optimal Production Planning Model of Coal-Fired Power Industry in China:Considering the Process of Closing Down Inefficient Units and Developing CCS Technologies[J]. Applied Energy, 2017, 206:519-530. 吴涛,白国良,刘伯权. 大型火力发电厂钢筋混凝土框排架主厂房结构抗震性能试验研究[J].建筑结构学报,2007,28(3):46-52. 秦丽. 结构风振与地震响应的TMD控制[D]. 北京:北京工业大学,2008. JOHN R S, RICHARD E K. Effect of Tuned-Mass Dampers on Seismic Response[J]. Journal of the Structural Division, 1983, 109(8):2004-2009. 龙复兴, 张旭, 顾平, 等. 调频质量阻尼器系统控制结构地震反应的若干问题[J]. 地震工程与工程振动, 1996(2):87-94. 秦丽, 李亚学, 徐福业. TMD对结构地震响应控制效果的研究[J]. 世界地震工程, 2010, 26(1):202-206. 郑国琛, 祁皑, 阎维明. 加层减震结构振动台试验分析[J]. 地震工程与工程振动, 2007, 27(2):164-170. 王博, 白国良, 代慧娟, 等. 火电厂主厂房型钢混凝土混合结构异型中节点抗震性能试验研究[J].建筑结构学报, 2013, 34(12):26-34. CHEN G, WU J. Optimal Placement of Multiple Tune Mass Dampers for Seismic Structures[J]. Journal of Structural Engineering, 2001, 127(9):1054-1062. FRANS R, ARFIADI Y. Designing Optimum Locations and Properties of MTMD Systems[J]. Procedia Engineering, 2015, 125:892-898. SHU Z, LI S, ZHANG J, et al. Optimum Seismic Design of a Power Plant Building with Pendulum Tuned Mass Damper System by Its Heavy Suspended Buckets[J]. Engineering Structures, 2017, 136:114-132. 廖翌棋, 高政国, 姚德康. 大型火电厂煤斗悬吊结构抗震性能研究[J]. 建筑结构, 2008, 38(6):30-33. 张士炼, 纪金豹, 郝晓敏, 等. 大型火电厂煤斗悬吊减震结构振动台试验研究[J]. 电力建设, 2009, 30(8):73-76. 何邵华,彭凌云,林娜,等.高烈度区大型火电厂混凝土主厂房支承式煤斗研究[J].武汉大学学报(工学版),2013,46(增刊1):85-89.
点击查看大图
计量
- 文章访问数: 56
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0