PERFORMANCE RESEARCH ON LATERAL STIFFNESS OF THE BASE-ISOLATION SHEAR WALL STRUCTURE CONSIDERING VERTICAL DEFORMATION OF ISOLATION BEARING
-
摘要: 与普通抗震结构不同,由于隔震支座会发生竖向变形,基础隔震结构在地震作用下将会发生一定的刚体转动,进而影响上部结构的侧向刚度,而这种刚体转动在剪力墙结构中表现得尤为明显。采用ABAQUS有限元分析软件对基础隔震双肢剪力墙结构进行了非线性有限元数值模拟计算,建立30个有限元模型,通过改变隔震支座拉压刚度比值、墙体轴压比、高宽比,对比分析了隔震支座竖向变形引起的隔震层转动对双肢剪力墙隔震结构抗震性能的影响。结果表明:增大隔震支座拉压刚度比与轴压比、减小剪力墙高宽比可以减小隔震支座竖向变形引起的上部结构转动;由于上部结构转动的影响,隔震上部结构抗侧刚度明显低于相同条件抗震结构,在工程设计中应引起重视。Abstract: Different from common seismic structures, due to the vertical deformation of the isolation bearing, certain rigid body rotation will occur in the base-isolated structure under the action of earthquake, thus affecting the lateral stiffness of the superstructure. Moreover,the rigid body rotation is particularly obvious in the shear wall structure. ABAQUS finite element analysis software was used to conduct the nonlinear finite element analysis of the coupled shear wall structure with base isolation. By changing the ratio of tensile and compressive stiffness of the isolation bearings, axial compression ratio and height-width ratio of the walls, thirty finite element models were established to analyze the influence of the rotation of the isolation layer caused by the vertical deformation of the isolation bearing on the seismic performance of the coupled shear wall isolation structure. The results showed that increasing the stiffness ratio and the axial compression ratio, decreasing the height-width ratio could reduce the rotation of the superstructure caused by the vertical deformation of the isolation bearing. Due to the influence of the rotation of the superstructure, the lateral stiffness of the isolated superstructure was obviously lower than seismic structure under the same condition, therefore attention should be paid in engineering design.
-
ZHOU F L, TAN P, HEISHA W, et al. Earthquake M7.0 on 2013.4.12 and Recent Development on Seismic Isolation, Energy Dissipation & Structural Control in China[C]//The 13th World Conference on Seismic Isolation & JSSI 20th Anniversary International Symposium. Sendai, Japan:The Japan Society of Seismic Isolation, 2013. URYU M, NISHIKAWA T. Study on Stiffness, Deformation and Ultimate Characteristics of Base-Isolated Rubber Bearings:Horizontal and Vertical Characteristics Under Shear Deformation[J]. Journal of Structural and Construction Engineering, 1996, 479:119-128. 谭平, 宋晓, 周福霖. 考虑SSI效应及支座转动的隔震体系性能研究[J]. 土木工程学报, 2016, 49(增刊1):78-83. 金建敏, 冯德民, 谭平, 等. 隔震支座拉伸刚度及高层隔震建筑地震响应研究[J]. 地震工程与工程振动, 2015, 35(3):177-182. 于敬海, 丁永君, 谢剑, 等. 高强钢筋高强混凝土双肢剪力墙抗震性能试验[J]. 天津大学学报, 2017, 50(2):181-187. 罗佳润, 马玉宏, 沈朝勇, 等. 隔震设计中橡胶隔震支座拉压刚度取值的研究[J]. 地震工程与工程振动, 2013, 33(5):232-240. 日本建筑学会. 隔震结构设计[M]. 北京:地震出版社, 2006. 石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社, 2006. 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2010. LEMAITRE J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Journal of Engineering Materials and Technology, 1985, 107:83-89. 方自虎, 周海俊, 赖少颖, 等. ABAQUS混凝土损伤参数计算方法[J].建筑结构, 2014, 44(1):719-721. 汪训流, 陆新征, 叶列平. 往复荷载下钢筋混凝土柱受力性能的数值模拟[J]. 工程力学, 2007, 24(12):76-81. LÉGERON F, PAULTRE P, MAZAR J. Damage Mechanics Modeling of Nonlinear Seismic Behavior of Concrete Structures[J]. Journal of Structural Engineering, 2005, 131(6):946-954. 濑户裕, 竹中康雄. 修正双线性模型表现隔震装置两方向非线性模型的延伸[C]//日本建筑学会学术讲演梗概集(B-2). 东京:日本建筑学会, 1996:805-806. 马健. 大高宽比高层剪力墙隔震结构抗倾覆性能研究[D].昆明:昆明理工大学,2017.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 0