ANALYSIS OF RADIAL ELASTIC VISCO-PLASTIC CONSOLIDATION FOR IDEAL SAND-DRAINED GROUND BASED ON HANSBO'S FLOW
-
摘要: 传统砂井固结理论没有考虑软黏土显著的流变特性以及渗流的非Darcy特性,常常导致计算结果与实际偏差较大。为进一步探究软黏土地区的砂井固结机理,通过引入考虑时间效应的统一硬化(UH)本构模型以及Hansbo渗流模型分别描述土体变形的非线性和渗流的非Darcy特性,在不考虑井阻和涂抹效应的情况下,对Barron自由应变假定下的砂井固结方程进行改进,并给出方程的隐式有限差分求解格式。与Berry的显式数值解的对比表明该算法是有效性的。据此对土体黏滞性以及Hansbo渗流参数对砂井非线性固结过程的影响进行分析。结果表明:软黏土的黏滞性使固结初期砂井影响区外边界附近的孔压升高,且黏滞性越强,这种现象就越明显;同时Hansbo渗流对孔压升高具有增强作用。但在固结的中后期,土体的黏滞性及渗流的非Darcy特性会延缓砂井地基中孔压的整体消散。Abstract: The traditional sand drain consolidation theory does not consider the significant rheological properties of soft clay and the non-Darcy characteristics of flow, which often leads to a large deviation between the calculated results and the observations. In order to further investigate the consolidation mechanism of sand drain ground in soft clay area, the nonlinear deformation of soil and the non-Darcy characteristics of flow were described by introducing uniform hardening (UH) constitutive model considering time effect and Hansbo's flow model, respectively. The consolidation equation of sand drain ground under the Barron's free strain assumption was modified without consideration of the well resistance and smear effect, and its numerical solutions were obtained by using the implicit finite difference method. The validity of the proposed method was verified by comparison with Berry's explicit numerical solutions. Based on that, the influence of soil viscosity and Hansbo's flow parameters on the nonlinear consolidation process of sand drain ground was analyzed. The numerical results showed that the viscosity of soft clay caused an increase in the pore pressure near the boundary of the influence zone of the sand filled drainage well at the early stage of consolidation, and the phenomenon became more obvious with the increase of viscosity. Meanwhile, Hansbo's flow enhanced the phenomenon of increased pore water pressure. However, at the middle and late stages of consolidation, the viscosity of the soil and the non-Darcy behaviour of the flow would delay the overall dissipation of pore water pressure in the ground with sand drains.
-
殷宗泽. 土工原理[M]. 北京:中国水利水电出版社, 2007. CARRILLO N. Simple Two and Three Dimensional Cases in the Theory of Consolidation of Soils[J]. Journal of Mathematics and Physics, 1942, 21:1-5. BARRON R A. Consolidation of Fine Grained Soils by Drain Wells[J]. Transactions of ASCE, 1948, 113:718-742. YOSHIKUNI H, NAKANADO H. Consolidation of Fine-Grained Soils by Drain Well with Filter Permeability[J]. Soil and Foundations, 1974, 14(2):35-46. ONOUE A. Consolidation by Vertical Drains Taking Well Resistance and Smear into Consideration[J]. Soil and Foundations, 1988, 28(4):165-174. HANSBO S, JAMIOLKOWSKI M, KOK L. Consolidation by Vertical Drains[J]. Geotechique, 1981, 31(1):45-46. 谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2):3-17. HANSBO S. Consolidation of Clay with Special Reference to Influence of Vertical Drains[C]//Proceeding of Swedish Geotechnical Institute. Stockholm:Swedish Geotechnical Institute, 1960:45-50. SLEPICKA F. Contribution to the Solution of the Filtration Law[C]//International Union of Geodesy and Geophysics, Commission of Subterranean Waters. 1960:245-258. MILLER R J, LOW P E. Threshold Gradient for Water Flow in Clay Systems[J]. Soil Society of American Journal, 1963, 27(6):605-609. HANSBO S. Aspects of Vertical Drain Design:Darcian or Non-Darcian Flow[J]. Geotechique, 1997, 47(5):983-992. HANSBO S. Consolidation Equation Valid for Both Darcian or Non-Darcian Flow[J]. Geotechique, 2001, 51(1):51-54. 刘忠玉, 焦阳. 基于Hansbo渗流的理想砂井地基固结分析[J]. 岩土工程学报, 2015, 37(5):792-801. WALKER R, INDRARATNA B, RUJIKIATKAMJORN C. Vertical Drain Consolidation with Non-Darcy Flow and Void-Ratio-Dependent Compressibility and Permeability[J]. Geotechnique, 2012, 62(11):985-997. BERRY P L, WILKNSON W B. The Radial Consolidation of Clay Soils[J]. Geotechnique, 1969, 19(2):253-284. BASAK P, MADHAV R. Analytical Solutions of Sand Drain Problems[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(1):129-135. LEKHA K R, KRISHNASWAMY N R, BASAK P. Consolidation of Clay by Sand Drain Under Time-Dependent Loading[J]. Journal of the Geotechnical and Geoenvironmental Engineering, 1998, 124(1):91-94. 周琦, 刘汉龙, 陈志波. 考虑固结参数变化时砂井地基的非线性径向固结[J]. 岩土力学, 2007, 28(增刊1):855-858. 张海丘, 高广运, 雷丹. 考虑3种非线性关系的径向排水固结解析解[J]. 工程地质学报, 2015, 23(4):681-686. 郭霄, 谢康和, 卢萌盟, 等. 直排式真空预压法下竖井地基的非线性固结解析解[J]. 中南大学学报(自然科学版), 2018, 49(2):384-392. 李西斌, 谢康和, 陈福全. 考虑软土流变特性和应力历史的一维固结与渗透试验[J]. 水利学报, 2013, 44(1):18-25. 刘俊新, 杨春和, 谢强, 等. 基于流变和固结理论的非饱和红层路堤沉降机制研究[J]. 岩土力学, 2015, 36(5):1295-1305. 赵维炳. 广义Voigt模型模拟的饱和土体轴对称固结理论解[J]. 河海大学学报, 1988, 16(5):47-56. 刘兴旺, 谢康和, 潘秋元, 等. 竖向排水井地基黏弹性固结解析理论[J]. 土木工程学报, 1998, 31(1):10-19. 王瑞春, 谢康和. 半透水边界的竖向排水井地基黏弹性固结分析[J].长江科学院院报, 2001, 18(6):33-36. 袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6):772-779. LEROUEIL S, KABBAJ M, TAVENAS F, et al. Stress-Strain-Strain Rate Relation for the Compressibility of Sensitive Natural Clays[J]. Géotechnique, 1985, 35(2):159-180. YIN J H, GRAHAM J. Viscous-Elastic-Plastic Modelling of One-Dimensional Time-Dependent Behaviour of Clays[J]. Canadian Geotechnical Journal, 1989, 26(2):199-209. KUTTER B L, SATHIALINGAM N. Elastic Viscoplastic Modelling of the Rate-Dependent Behaviour of Clays[J]. Géotechnique, 1992, 42(3):427-441. 姚仰平. 土的统一硬化模型及其发展[J]. 工业建筑, 2008, 38(8):1-5. 姚仰平, 孔令明, 胡晶. 考虑时间效应的UH模型[J]. 中国科学:技术科学, 2013, 43(3):298-314. 胡晶, 姚仰平. 基于考虑时间效应UH模型的一维固结分析[J]. 北京航空航天大学学报, 2015, 41(8):1492-1498. LEO C J. Equal Strain Consolidation by Vertical Drains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3):316-327. RICHART JR F E. A Review of the Theories for Sand Drains[C]//Proceeding of ASCE, 1957, 83(SM3):1-38. 秦爱芳, 李天义, 裴杨从琪, 等. 半渗透边界下非饱和土砂井地基固结特性[J]. 工程地质学报, 2019, 27(2):390-397. 张玉国, 万东阳, 郑言林, 等. 考虑径向渗透系数变化的真空预压竖井地基固结解析解[J]. 岩土力学, 2019, 40(9):1-9. MANDEL J. Consolidation Des Sols[J]. Geotechnique, 1953, 9(3):287-299. 殷建华, Clark J I. 土体与时间相关的一维应力-应变性状、弹黏塑性模型和固结分析[J]. 岩土力学, 1994, 15(3):65-80. 殷建华, Clark J I. 土体与时间相关的-维应力-应变性状、弹黏塑性模型和团结分析(续)[J]. 岩土力学, 1994, 15(4):65-75. 丁洲祥, 袁大军, 朱合华. 一维大变形主、次固结耦合新模型[J]. 岩土力学, 2010, 31(8):2367-2372. 仇玉良, 丁洲祥. 一维小变形主、次固结耦合理论模型分析[J]. 岩土力学, 2012, 33(7):1957-1964.
点击查看大图
计量
- 文章访问数: 69
- HTML全文浏览量: 4
- PDF下载量: 2
- 被引次数: 0