中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hansbo渗流的理想砂井地基径向弹黏塑性固结分析

刘忠玉 李庆铠 朱新牧 夏洋洋

刘忠玉, 李庆铠, 朱新牧, 夏洋洋. 基于Hansbo渗流的理想砂井地基径向弹黏塑性固结分析[J]. 工业建筑, 2020, 50(3): 96-101,108. doi: 10.13204/j.gyjz202003016
引用本文: 刘忠玉, 李庆铠, 朱新牧, 夏洋洋. 基于Hansbo渗流的理想砂井地基径向弹黏塑性固结分析[J]. 工业建筑, 2020, 50(3): 96-101,108. doi: 10.13204/j.gyjz202003016
LIU Zhongyu, LI Qingkai, ZHU Xinmu, XIA Yangyang. ANALYSIS OF RADIAL ELASTIC VISCO-PLASTIC CONSOLIDATION FOR IDEAL SAND-DRAINED GROUND BASED ON HANSBO'S FLOW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 96-101,108. doi: 10.13204/j.gyjz202003016
Citation: LIU Zhongyu, LI Qingkai, ZHU Xinmu, XIA Yangyang. ANALYSIS OF RADIAL ELASTIC VISCO-PLASTIC CONSOLIDATION FOR IDEAL SAND-DRAINED GROUND BASED ON HANSBO'S FLOW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 96-101,108. doi: 10.13204/j.gyjz202003016

基于Hansbo渗流的理想砂井地基径向弹黏塑性固结分析

doi: 10.13204/j.gyjz202003016
基金项目: 

国家自然科学基金项目(51578511)。

详细信息
    作者简介:

    刘忠玉,男,1968年出生,博士,教授,博士生导师。电子信箱:zhyliu@zzu.edu.cn

ANALYSIS OF RADIAL ELASTIC VISCO-PLASTIC CONSOLIDATION FOR IDEAL SAND-DRAINED GROUND BASED ON HANSBO'S FLOW

  • 摘要: 传统砂井固结理论没有考虑软黏土显著的流变特性以及渗流的非Darcy特性,常常导致计算结果与实际偏差较大。为进一步探究软黏土地区的砂井固结机理,通过引入考虑时间效应的统一硬化(UH)本构模型以及Hansbo渗流模型分别描述土体变形的非线性和渗流的非Darcy特性,在不考虑井阻和涂抹效应的情况下,对Barron自由应变假定下的砂井固结方程进行改进,并给出方程的隐式有限差分求解格式。与Berry的显式数值解的对比表明该算法是有效性的。据此对土体黏滞性以及Hansbo渗流参数对砂井非线性固结过程的影响进行分析。结果表明:软黏土的黏滞性使固结初期砂井影响区外边界附近的孔压升高,且黏滞性越强,这种现象就越明显;同时Hansbo渗流对孔压升高具有增强作用。但在固结的中后期,土体的黏滞性及渗流的非Darcy特性会延缓砂井地基中孔压的整体消散。
  • 殷宗泽. 土工原理[M]. 北京:中国水利水电出版社, 2007.
    CARRILLO N. Simple Two and Three Dimensional Cases in the Theory of Consolidation of Soils[J]. Journal of Mathematics and Physics, 1942, 21:1-5.
    BARRON R A. Consolidation of Fine Grained Soils by Drain Wells[J]. Transactions of ASCE, 1948, 113:718-742.
    YOSHIKUNI H, NAKANADO H. Consolidation of Fine-Grained Soils by Drain Well with Filter Permeability[J]. Soil and Foundations, 1974, 14(2):35-46.
    ONOUE A. Consolidation by Vertical Drains Taking Well Resistance and Smear into Consideration[J]. Soil and Foundations, 1988, 28(4):165-174.
    HANSBO S, JAMIOLKOWSKI M, KOK L. Consolidation by Vertical Drains[J]. Geotechique, 1981, 31(1):45-46.
    谢康和, 曾国熙. 等应变条件下的砂井地基固结解析理论[J]. 岩土工程学报, 1989, 11(2):3-17.
    HANSBO S. Consolidation of Clay with Special Reference to Influence of Vertical Drains[C]//Proceeding of Swedish Geotechnical Institute. Stockholm:Swedish Geotechnical Institute, 1960:45-50.
    SLEPICKA F. Contribution to the Solution of the Filtration Law[C]//International Union of Geodesy and Geophysics, Commission of Subterranean Waters. 1960:245-258.
    MILLER R J, LOW P E. Threshold Gradient for Water Flow in Clay Systems[J]. Soil Society of American Journal, 1963, 27(6):605-609.
    HANSBO S. Aspects of Vertical Drain Design:Darcian or Non-Darcian Flow[J]. Geotechique, 1997, 47(5):983-992.
    HANSBO S. Consolidation Equation Valid for Both Darcian or Non-Darcian Flow[J]. Geotechique, 2001, 51(1):51-54.
    刘忠玉, 焦阳. 基于Hansbo渗流的理想砂井地基固结分析[J]. 岩土工程学报, 2015, 37(5):792-801.
    WALKER R, INDRARATNA B, RUJIKIATKAMJORN C. Vertical Drain Consolidation with Non-Darcy Flow and Void-Ratio-Dependent Compressibility and Permeability[J]. Geotechnique, 2012, 62(11):985-997.
    BERRY P L, WILKNSON W B. The Radial Consolidation of Clay Soils[J]. Geotechnique, 1969, 19(2):253-284.
    BASAK P, MADHAV R. Analytical Solutions of Sand Drain Problems[J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(1):129-135.
    LEKHA K R, KRISHNASWAMY N R, BASAK P. Consolidation of Clay by Sand Drain Under Time-Dependent Loading[J]. Journal of the Geotechnical and Geoenvironmental Engineering, 1998, 124(1):91-94.
    周琦, 刘汉龙, 陈志波. 考虑固结参数变化时砂井地基的非线性径向固结[J]. 岩土力学, 2007, 28(增刊1):855-858.
    张海丘, 高广运, 雷丹. 考虑3种非线性关系的径向排水固结解析解[J]. 工程地质学报, 2015, 23(4):681-686.
    郭霄, 谢康和, 卢萌盟, 等. 直排式真空预压法下竖井地基的非线性固结解析解[J]. 中南大学学报(自然科学版), 2018, 49(2):384-392.
    李西斌, 谢康和, 陈福全. 考虑软土流变特性和应力历史的一维固结与渗透试验[J]. 水利学报, 2013, 44(1):18-25.
    刘俊新, 杨春和, 谢强, 等. 基于流变和固结理论的非饱和红层路堤沉降机制研究[J]. 岩土力学, 2015, 36(5):1295-1305.
    赵维炳. 广义Voigt模型模拟的饱和土体轴对称固结理论解[J]. 河海大学学报, 1988, 16(5):47-56.
    刘兴旺, 谢康和, 潘秋元, 等. 竖向排水井地基黏弹性固结解析理论[J]. 土木工程学报, 1998, 31(1):10-19.
    王瑞春, 谢康和. 半透水边界的竖向排水井地基黏弹性固结分析[J].长江科学院院报, 2001, 18(6):33-36.
    袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6):772-779.
    LEROUEIL S, KABBAJ M, TAVENAS F, et al. Stress-Strain-Strain Rate Relation for the Compressibility of Sensitive Natural Clays[J]. Géotechnique, 1985, 35(2):159-180.
    YIN J H, GRAHAM J. Viscous-Elastic-Plastic Modelling of One-Dimensional Time-Dependent Behaviour of Clays[J]. Canadian Geotechnical Journal, 1989, 26(2):199-209.
    KUTTER B L, SATHIALINGAM N. Elastic Viscoplastic Modelling of the Rate-Dependent Behaviour of Clays[J]. Géotechnique, 1992, 42(3):427-441.
    姚仰平. 土的统一硬化模型及其发展[J]. 工业建筑, 2008, 38(8):1-5.
    姚仰平, 孔令明, 胡晶. 考虑时间效应的UH模型[J]. 中国科学:技术科学, 2013, 43(3):298-314.
    胡晶, 姚仰平. 基于考虑时间效应UH模型的一维固结分析[J]. 北京航空航天大学学报, 2015, 41(8):1492-1498.
    LEO C J. Equal Strain Consolidation by Vertical Drains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3):316-327.
    RICHART JR F E. A Review of the Theories for Sand Drains[C]//Proceeding of ASCE, 1957, 83(SM3):1-38.
    秦爱芳, 李天义, 裴杨从琪, 等. 半渗透边界下非饱和土砂井地基固结特性[J]. 工程地质学报, 2019, 27(2):390-397.
    张玉国, 万东阳, 郑言林, 等. 考虑径向渗透系数变化的真空预压竖井地基固结解析解[J]. 岩土力学, 2019, 40(9):1-9.
    MANDEL J. Consolidation Des Sols[J]. Geotechnique, 1953, 9(3):287-299.
    殷建华, Clark J I. 土体与时间相关的一维应力-应变性状、弹黏塑性模型和固结分析[J]. 岩土力学, 1994, 15(3):65-80.
    殷建华, Clark J I. 土体与时间相关的-维应力-应变性状、弹黏塑性模型和团结分析(续)[J]. 岩土力学, 1994, 15(4):65-75.
    丁洲祥, 袁大军, 朱合华. 一维大变形主、次固结耦合新模型[J]. 岩土力学, 2010, 31(8):2367-2372.
    仇玉良, 丁洲祥. 一维小变形主、次固结耦合理论模型分析[J]. 岩土力学, 2012, 33(7):1957-1964.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05

目录

    /

    返回文章
    返回