RESEARCH ON OPTIMIZATION OF NATURAL VENTILATION PERFORMANCE OF NATIONAL FITNESS CENTER BUILDINGS BASED ON RESPONSE SURFACE
-
摘要: 在解析现有自然通风性能优化方法特征的基础上,提出适用于方案阶段基于响应面的自然通风优化流程,核心环节依次为:参数敏感性分析、试验设计、响应面模型建构、多目标优化,并采用ANSYS Workbench搭建协同优化平台。以全民健身中心典型空间模型为例展开实践探讨,提取11个几何形态参数作为输入变量,选取空气龄、温度和风速作为优化目标。应用参数化建模技术、流体动力学计算数值模拟技术获得200组数据,采用Kriging算法构建响应面模型;利用遗传算法调用响应面模型数据进行快速寻优,最终获得优化候选方案,以及各几何参数的优化区间。
-
关键词:
- 响应面 /
- 自然通风性能优化 /
- 流体动力学计算数值模拟 /
- 多目标遗传算法 /
- 全民健身中心
Abstract: Based on the analysis of the characteristics of existing natural ventilation performance optimization methods, the optimization process based on response surface suitable for design stage was proposed. The core steps were: parameter sensitivity analysis, experimental design, response surface model construction, multi-objective optimization, and collaborative optimization platform was established by using ANSYS Workbench. Taking the typical space model of the National Fitness Center as an example, 11 geometric parameters were explored as input variables, and the air age, temperature and wind speed were selected as the optimization targets. By using the parametric modeling technology and CFD numerical simulation technology, 200 sets of data were obtained, and the response surface model was constructed by Kriging algorithm. The genetic algorithm was used to call the response surface model data for fast optimization, and finally the optimization candidates and the optimization interval of each geometric parameter were obtained. -
谭子龙.基于建筑风环境分析的Grasshopper与Fluent接口技术研究[D].南京:南京大学,2016. KARAGKOUNI C, SCHIECK A F, TSIGKARI M,et al.Facade Apertures Optimization:Integrating Cross-Ventilation Performance Analysis in Fluid Dynamics Simulation[C]//Orlando:Symposium on Simulation for Architecture and Urban Sign,2013. KYLE K,ALEJANNDRO G,KAREN K.Passive Performance and Building Form-An Optimization Framework for Early-Stage Design Support[J].Solar Energy,2016,125(2):161-179. WANG B, MALKAWI A.Genetic Algorithm based Building Form Optimization Study for Natural Ventilation Potential[C].Proceedings of BS,2015:640-647. 吉国华.参数化图解与性能化设计[J].时代建筑,2016(5):44-47. MENICOVICH D,GALLARDO D, BEVILAQUA R,et al.Generation and Integration of an Aerodynamic Performance Database within the Concept Design Phase of Tall Buildings[C]//San Francisco:ACADIA 2012. 2012. 袁烽.从图解思维到数字建造[M].上海:同济大学出版社,2016. BOX G E P,WILSON K B.On the Experiment Attainment of Optimum Conditions[J].Journal of the Royal Statistical Society Series B,1951,13(3):1-45. 刘文卿.试验设计[M].北京:清华大学出版社,2005. LOEPPKY J L, SACKS J, WELCH W J.Choosing the Sample Size of a Computer Experiment:A Practical Guide[J].Technometrics,2009(51):366-376. CAVAZZUTI M. Optimization Methods:from Theory to Design[M]. Berlin:Spring-Verlag,2013. 李坚. 代理模型近似技术研究及其在结构可靠度分析中的作用[D]. 上海:上海交通大学,2013.
点击查看大图
计量
- 文章访问数: 115
- HTML全文浏览量: 6
- PDF下载量: 6
- 被引次数: 0