EXPERIMENTAL RESEARCH ON THE MECHANICAL PROPERTIES OF THIN-WALLED STAINLESS STEEL TUBE COMPOSITE SHORT COLUMNS FILLED WITH STEEL-REINFORCED CONCRETE UNDER AXIAL COMPRESSION
-
摘要: 为研究薄壁不锈钢管-钢骨混凝土组合短柱的轴压力学性能,以含钢率和混凝土强度为试验变量,设计了6个薄壁不锈钢管混凝土组合短柱,包含4个不锈钢管-钢骨混凝土组合短柱,2个不锈钢管混凝土组合短柱对比试件。通过不锈钢管组合短柱轴压性能试验结果,分析各试件的破坏形态、荷载-位移曲线、承载力及应变特征,并研究了不同变量对极限承载力及残余承载力的影响规律。研究结果表明:不锈钢管-钢骨混凝土组合短柱具有较高的承载能力和较好的延性;含钢率对试件承载力影响较大,随着含钢率增大,试件承载力显著提高;混凝土强度的提高也显著提高了试件的承载力。采用欧洲EC4、中国GB 50936标准及相关学者提出的理论计算式计算了不锈钢管-钢骨混凝土组合短柱的极限承载力,结果表明:考虑钢管及钢骨双重约束效应的理论计算式能较为准确地预测不锈钢管-钢骨混凝土柱承载力。Abstract: In order to study the mechanical properties of thin-walled stainless steel tube composite short columns filled with steel-reinforced concrete, six concrete filled thin-walled stainless steel tube composite short columns were designed, including four stainless steel tube composite columns filled with steel-reinforced concrete and two concrete filled stainless steel tube stub columns for comparison. The failure modes, load-displacement curves, bearing capacity and strain characteristics of each specimen were analyzed by the results of axial compression performance test of stainless steel pipe composite short columns. The effects of different variables on the ultimate bearing capacity and residual bearing capacity were studied. The test results showed that stainless steel tube composite short columns filled with steel-reinforced concrete had higher bearing capacity and better ductility. The steel ratio had a great influence on the ultimate bearing capacity. The ultimate bearing capacity of specimens was improved significantly with the increase of steel ratio and concrete strength. The test results of bearing capacity were compared with the predicted bearing capacity using the Eurocode 4, GB 50936 and the proposed formula by related scholars. The formula considering the dual confinement effect of steel tube and section steel could predict accurately the bearing capacity of stainless steel tube composite short column filled with steel-reinforced concrete.
-
张纪刚, 舒凡, 赵铁军, 等. 不锈钢管中管混凝土海洋平台导管腿轴压性能试验研究[J]. 建筑结构学报, 2018, 39(增刊1):279-285. 许志豪. 昂船洲大桥耐久性、维修和安全考虑[C]//第十七届全国桥梁学术会议论文集(上册). 北京:中国土木工程学会, 2006. 闻洋, 郝铭科. 轴压钢骨-钢管混凝土组合柱影响因素分析[J]. 建筑结构, 2010, 40(增刊1):248-250. 李云云, 闻洋, 杨德山. 钢骨-钢管混凝土柱抗震性能的影响因素[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(4):628-634. 徐亚丰, 金松, 牟璐. 轴心受压钢骨-方钢管高强混凝土组合短柱承载力[J]. 土木建筑与环境工程, 2015, 37(增刊2):17-22. 史艳莉, 陈彦玉, 王文达. 长期荷载作用下内置钢骨钢管混凝土轴压短柱受力性能研究[J].建筑科学, 2016, 32(9):61-68. CHEN Yu, FENG Ran, WANG Lipeng. Flexural Behaviour of Concrete-Filled Stainless Steel SHS and RHS Tubes[J]. Engineering Structures, 2017, 134:159-171. LIAO Feiyu, HAN Linhai, TAO Zhong, et al. Experimental Behavior of Concrete-Filled Stainless Steel Tubular Columns Under Cyclic Lateral Loading[J]. Journal of Structural Engineering, 2017, 143(4):1-15. 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分:室温试验方法:GB/T 228.1-2010[S]. 北京:中国标准出版社, 2010. 中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2002[S]. 北京:中国建筑工业出版社, 2002. HAMIDIAN M R, JUMAAT M Z, ALENGARAM U J, et al. Pitch Spacing Effect on the Axial Compressive Behavior of Spirally Reinforced Concrete-Filled Steel Tube (SRCFT)[J]. Thin-Walled Structures, 2016, 100:213-223. 中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936-2014[S]. 北京:中国建筑工业出版社, 2014. BSI. Design of Composite Steel and Concrete Structures:Eurocode 4[S]. London:UK, European Committee for Standardization, 2004. 关萍. 钢骨-钢管混凝土轴压短柱承载力[C]//第24届全国结构工程学术会议论文集(第Ⅰ册). 北京:中国力学学会工程力学编辑部, 2015. 肖阿林. 钢骨-钢管高性能混凝土轴压组合柱受力性能与设计方法研究[D]. 长沙:湖南大学, 2009.
点击查看大图
计量
- 文章访问数: 92
- HTML全文浏览量: 6
- PDF下载量: 2
- 被引次数: 0