RESEARCH ON THE STABILITY BEARING CAPALITY OF THE IN-LINE WALL OF THE STRUCTURE OF STAINLESS STEEL SANDWICH PANEL UNDER ONE-WAY COMPRESSION AND BENDING
-
摘要: 不锈钢芯板一字形墙是由两片不锈钢面板及正交均匀排列的不锈钢芯管组成,芯管与面板之间的连接采用铜钎焊焊接。为研究不锈钢芯板一字形墙的压弯稳定性能,首先,进行了有限元特征值屈曲分析,得到了计算一字形墙弹性屈曲荷载及相应的正则化高宽比λn的计算式;通过有限元非线性分析,研究其受力过程和破坏机理,分析了高宽比、面板厚度、芯管外径、芯管壁厚以及芯管分布间距等参数变化对不锈钢芯板一字形墙压弯稳定承载力的影响,得到了轴心受压稳定系数φN与纯弯稳定系数φM,以及进行稳定设计的φN、φM-λn曲线;建立在可靠的有限元建立方法上,设计了3组不锈钢芯板一字形墙有限元模型,并对其压弯稳定承载力进行了有限元模拟研究。结果表明,计算式计算的构件承载力偏于安全。
-
关键词:
- 不锈钢芯板 /
- 一字形截面 /
- 单向压弯 /
- 稳定性设计 /
- ABAQUS有限元模拟
Abstract: The in-line wall of the structure of stainless steel sandwich panel is composed of two stainless steel panels and orthogonally arranged stainless steel core tubes. The connection between the core tube and the panel was brazed by copper. In the paper, the stability of the in-line wall of the structure of stainless steel sandwich panel under compression and bending was studied.Firstly, the finite element eigenvalue buckling analysis was carried out, and the formula for calculating the elastic buckling load of the in-line wall and the corresponding regularized aspect ratio λn was obtained. The finite element nonlinear analysis was used to study the stress process and failure mechanism. The influence of parameters such as aspect ratio, panel thickness, outer diameter of core tube, wall thickness of core tube and distribution distance of core tubes on the stability bearing capacity of the in-line wall of the structure of stainless steel sandwich panel was obtained, as well as the stability coefficient of axial compression φN and pure bending stability coefficient φM, and the φN -λn and φM-λn curves for stable design were established. Based on the reliable finite element method of in-line wall of stainless steel sandwich panel were designed, and the stability bearing capacity under compression and bending was studied by finite element simulation. The results showed that the design formula could calculate the bearing capacity of the component safely. -
刘杰,郝巍,孟江燕.蜂窝夹层结构复合材料应用研究进展[J].宇航材料工艺,2013,43(3):25-29. 许潮华,张小珍,宋桂枝."Nomex"蜂窝芯材的研制及应用[J].玻璃钢/复合材料,1986(2):22-24. 陈大川,蒋玉春,舒兴平,等.不锈钢芯板一字形墙轴心受压承载力研究[J].工业建筑,2020,50(2):51-58. RASMUSSEN K J R. Full-Range Stress-Strain Curves for Stainless Steel Alloys[J]. Journal of Constructional Steel Research, 2003, 59(1):47-61 史勤益, 颜余仁, 赵先锐,等. 304奥氏体不锈钢的热处理工艺研究[J]. 科学技术与工程, 2011, 11(24):5910-5913. 中国工程建设标准化协会.不锈钢结构技术规程:CECS 410:2015[S].北京:中国计划出版社,2015. 董雨辰. 不锈钢芯板结构芯管剪切性能试验研究与有限元分析[D].长沙:湖南大学,2018. 黄牧兴. 不锈钢芯板结构侧压性能试验研究与有限元分析[D].长沙:湖南大学,2018. 彭明军,孙勇,段永华,等.钎焊蜂窝铝板侧压变形模式分析研究[J].材料导报,2010,24(6):75-77. 於忠华,王静峰,沈奇罕.椭圆钢管混凝土长柱偏压受力性能研究[J].建筑钢结构进展,2018,20(2):103-109. TIMOSHENKO S P, GERE J M. Theory of Elastic Stability[M]. New York:McGraw-Hill, 1961. GUO T. Shear Resistance of Stiffened Steel Corrugated Shear Walls[J]. Thin-Walled Structures, 2018,127:76-89. GUO Y, ZHU J, WANG M, et al. Overall Instability Performance of Concrete-Infilled Double Steel Corrugated-Plate Wall[J]. Thin-Walled Structures, 2018, 130:372-394. WANG M Z, GUO Y L, ZHU J S, et al. Strength Design of Concrete-Infilled Double Steel Corrugated-Plate Walls with T-Section Under Combined Axial Compression and Bending Moment[J]. J. of Constructional Steel Research, 2019, 160:23-44. ZHU J S, GUO Y L, ZHU B L, et al. Strength Design of Concrete-Infilled Double Steel Corrugated-Plate Walls Under Uniform Compressions[J]. Thin-Walled Structures, 2019, 141:153-174. TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of Plates and Shells[M]. New York:McGraw-Hill, 1959.
点击查看大图
计量
- 文章访问数: 72
- HTML全文浏览量: 4
- PDF下载量: 3
- 被引次数: 0