EXPERIMENTAL STUDY AND THEORETICAL ANALYSIS OF DEFLECTION OF SIMPLY SUPPORTED UNIDIRECTIONAL PLATES ON FOUR SIDES OF THE STRUCTURE OF STAINLESS STEEL SANDWICH PANEL
-
摘要: 不锈钢芯板结构是一种类似于蜂窝板的新型建筑结构体系,这种结构是由上、下面板以及面板之间以一定间距排布的薄壁圆管通过铜钎焊焊接而成。采用试验、有限元分析和理论分析三种方法对不锈钢芯板四边简支单向板的挠度进行研究。理论分析以虚功原理为基础,通过对不锈钢芯板进行力学模型的简化,推导出了不锈钢芯板四边简支单向板在跨中承受集中荷载时的跨中挠度计算式。通过试验结果,对挠度计算式进行了验证。最后,分析了不同参数对于不锈钢芯板四边简支单向板挠度的影响。研究结果表明:基于虚功原理推导出的挠度计算式可以较精确计算出不锈钢芯板四边简支单向板的跨中挠度,此外,芯管的外径、纵向间距和面板的厚度对跨中挠度的影响较大。Abstract: The structure of stainless steel sandwich panel is a new type of building structure system similar to the honeycomb plate. The structure is formed by brazing a thin-walled pipe arranged at a certain distance between the upper and lower panels. In the paper, the deflections at the mid-span of four-side simply supported unidirectional plates of the structure of stainless steel sandwich panel were studied by experiments, finite element analysis and theoretical analysis. Theoretical analysis was based on the principle of virtual work. Through the simplification of the mechanical model of stainless steel sandwich panel, the formula for calculating the deflection of the four-side simply supported unidirectional plate with the structure of stainless steel sandwich panel subjected to concentrated load at the mid-span was derived. Through the test results, the deflection calculation formula was verified. Finally, the influence of different parameters on the deflection of the four-side unidirectional plate of stainless steel sandwich panel was analyzed. The research results showed that the deflection calculation formula based on the virtual work principle could accurately calculate the mid-span deflection of the four-side simply supported unidirectional plate of the structure of stainless steel sandwich panel. In addition, the outer diameter of the core tube, the longitudinal spacing, and the thickness of the panel had a greater impact on the mid-span deflection.
-
刘玉军,蒋荃,胡云林. 铝蜂窝复合板的发展及标准制定[J]. 中国建材科技,2010(5):27-29. 张明明,吴宏伟,王帅,等.蜂窝机翼结构计算与优化设计[J].机械强度,2017,39(5):1151-1157. 赵丽,童国权,王琦,等.高温合金蜂窝板弯曲性能[J].塑性工程学报,2015,22(3):148-152. 李贤冰,温激鸿,郁殿龙,等.蜂窝夹层板力学等效方法对比研究[J].玻璃钢/复合材料,2012(增刊1):11-15. 张广平, 戴干策. 复合材料蜂窝夹芯板及其应用[J]. 纤维复合材料, 2000, 17(2):25-27,6. SUN G Y, HUO X T, CHEN D D, et al. Experimental and Numerical Study on Honeycomb Sandwich Panels Under Bending and In-Panel Compression[J].Materials and Design,2017(133):154-168. MOHEBKHAH A, SHOWKATI H. Bracing Requirements for Inelastic Castellated Beams[J]. Journal of Constructional Steel Research, 2005, 61(10):1373-1386. 倪富生,胡泰祥,胡嗣元,等.蜂窝梁的应力分布及设计计算探讨[J].工业建筑,1984,14(8):27-35. 陈禄如.蜂窝梁的简化计算与试验研究[J].工业建筑,1985,15(5):31-38. 张兴杰. 蜂窝梁的抗弯刚度分析和挠度计算[D]. 上海:同济大学, 2006:1-61. 郑坤龙.变高度工字截面圆孔蜂窝梁的挠度计算[D].长沙:中南大学, 2007:1-34. SONCK D, BELIS J. Lateral-Torsional Buckling Resistance of Castellated Beams[J]. Journal of Structural Engineering, 2017, 143(3). 10.1061/(ASCE)ST.1943-541X.0001690. WALID Z, RICHARD R.Web Buckling in Thin Webbed Castellated Beams[J]. Journal of Structural Engineering,1996, 122(8):860-866. 罗晓霖. 蜂窝梁的整体稳定性能分析[D]. 上海:同济大学, 2005:1-15. 罗烈, 罗晓霖. 蜂窝梁设计规范的比较研究[J]. 建筑钢结构进展, 2005, 7(2):43-47. 陈大川,蒋玉春,舒兴平,等.不锈钢芯板一字形墙轴心受压承载力研究[J].工业建筑,2020,50(2):51-58. 王元清,袁焕鑫,石永久,等. 不锈钢结构的应用和研究现状[J]. 钢结构,2010,25(2):6-8. ALVARO P, LORINTZ B, GLEICH P E, et al. Structural Performance of Prestressed Concrete Bridge Piles Using Duplex Stainless Steel Strands[J]. Journal of Structural Engineering, 2017, 143(7):1-12.
点击查看大图
计量
- 文章访问数: 67
- HTML全文浏览量: 6
- PDF下载量: 3
- 被引次数: 0