FAILURE MODES, CHARACTERISTICS AND EARLY WARNING IDENTIFICATION OF ROCK MASS RESISTING WATER GUSHING-OUT IN TUNNEL
-
摘要: 突水作为一种地质灾害,在岩溶隧道的建设中较为常见。防突岩体的结构类型、破坏模式与突水灾害的发生密切相关。通过对30例突水事故的统计分析,发现突水灾害主要发生在深长大跨岩溶隧道中,突水量集中在100~10 000 m3/h;根据案例中对防突水岩体结构的具体描述提出了完整-较完整结构、层状碎裂结构、块状破碎结构、断续结构、土-石混合结构和致密散体结构六种结构类型,对每种岩体结构的破坏模式进行详细的阐述;描述三类具有代表性的防突岩体在高水压作用下的渗透特征,得出突水通道的形成是内部裂隙在高水压的反复作用下,不断发生扩展、贯通和冲刷扩径的渐变过程。最后,为预测突水发生的可能性,对突涌水水压力的大小及其变化趋势、防突岩体变形破坏时的位移变化和岩体温度场受地下水影响的变化等信息进行辨析,将其作为突水灾害的预警辨识,在突水发生之前采取措施对灾害进行控制。Abstract: As a kind of geological disaster, water gushing-out is more common in the construction of karst tunnels, and the structural type, failure mode of the rock mass resisting water gushing-out is closely related to the occurrence of such disaster. Through the statistical analysis on 30 cases of water gushing-out accidents, it was found that the water gushing-out disaster mainly occurred in the deep-long and long-span karst tunnel, and the discharge of water was about 100 to 10 000 m3/h. Based on the detail description of the rock mass resisting water gushing-out structure in the cases, six structural types were summerized, including intact to relatively intact structure, layered fragmented structure, block fractured structure, intermittent structure, soil-rock mixture structure and dense bulk structure. The failure mode of each rock mass structure was described in detail. Then, the permeability characteristics of three representative types of rock mass resisting water gushing-out under high water pressure were described. It was known that the formation of water gushing-out channel was a gradual process in which the internal joint and fissure expanded, penetrated and scoured under the repeated action of high water pressure. Finally, in order to predict the possibility of water gushing-out, the magnitude and trend of water gushing-pressure, displacement change during deformation and failure of the rock mass resisting water gushing-out and variation of temperature field of rock mass affected by groundwater were distinguished and analyzed. They were used as early warning identification of water gushing-out disaster, and the measures were taken to control the disaster before water gushing-out happened.
-
解东升,石少帅,陈士林,等.高风险岩溶隧道突水突泥灾害前兆规律与应用研究[J].山东大学学报(工学版), 2012, 42(1):81-86, 98. 余雪祯.公路隧道地质灾害预测及其处理措施数据库管理系统开发[D].成都:成都理工大学, 2009. 郭如军,何发亮.隧道施工突水致灾构造及其分类[J].现代隧道技术, 2017, 54(1):55-60, 67. 徐济川,黄少霞.大瑶山隧道的突泥涌水机制[J].铁道工程学报, 1996(2):83-89. 陈骏骏.岩溶隧道涌突水灾害风险评价研究[D].长春:吉林大学, 2016. 谢举.岩溶隧道施工突水灾变机理与防治对策研究[D].重庆:重庆交通大学, 2013. 王建秀,冯波,张兴胜,等.岩溶隧道围岩水力破坏机制研究[J].岩石力学与工程学报, 2010, 29(7):1363-1370. 陈帆.岩溶隧道掌子面断续节理防突岩体突水演化规律[D].焦作:河南理工大学, 2018. 苟晓军,何发亮.隔水隔泥岩土盘构成及其破坏模式研究[J].工程地质学报, 2017, 25(增刊):158-163. 何发亮,吴德胜,郭如军,等.隧道施工地质灾害与致灾构造及其致灾模式[M].成都:西南交通大学出版社, 2015:102-106. 李术才,王康,李利平,等.岩溶隧道突水灾害形成机理及发展趋势[J].力学学报, 2017, 49(1):22-30. 杨艳娜.西南山区岩溶隧道涌突水灾害危险性评价系统研究[D].成都:成都理工大学, 2009. 徐则民,周润秋,王士天.隧道的埋深划分[J].中国地质灾害与防治学报,2000,11(4):4-10. 李鹏飞,周烨,伍冬.隧道围岩压力计算方法及其适用范围[J].中国铁道科学, 2013, 34(6):55-60. 李新宇,张顶立,房倩,等.越江跨海隧道突水模式研究[J].现代隧道技术, 2015, 52(4):24-31, 40. 贺振宇,郭佳奇,陈帆,等.隧道典型致灾构造及突水模式分析[J].中国地质灾害与防治学报, 2017, 28(2):97-107. 方振华,杨英,丁浩江.成贵铁路上高山隧道岩溶管道涌突水病害研究[J].高速铁路技术, 2017, 8(4):70-73. 陈永康.岑溪大隧道涌水原因及数值模拟分析[J].桥隧工程, 2017(1):33-37. 李儒挺.岑溪大隧道涌水原因分析及处治措施研究[D].西安:长安大学, 2013. 尹修全.雪峰山1号隧道工程地下水环境分析研究[D].成都:西南交通大学, 2012. 许占良,张乃乐,周中财,等.雪峰山1号隧道风险评估与管理[J].铁道工程学报, 2014(6):77-80, 103. 田鹏.雪峰山1号隧道3号斜井突泥涌水处治方案研究[J].科技传播, 2012, 4(15):75-76. 苏昌,陈海洋,周宁,等.平阳隧道岩溶突水类型与形成机理研究[J].资源环境与工程, 2012, 26(增刊):7-10, 19. 刘海京,黄伦海,张学强,等.平阳隧道突泥涌水灾害处治设计与施工[J].公路交通技术, 2011(6):93-98. 米桂芬.平阳隧道突泥涌水处治施工技术[J].科技传播, 2013(15):171, 164. 张民庆,刘招伟.圆梁山隧道岩溶突水特征分析[J].岩土工程学报, 2005, 27(4):422-426. 张民庆,孙国庆,邹冲,等.圆梁山隧道2号溶洞正洞施工技术[J].铁道工程学报, 2004(4):68-76, 38. 王树仁,何满潮,刘招伟.岩溶隧道突水灾变过程分析及控制技术[J].北京科技大学学报, 2006(7):613-618. 刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].北京:中国地质大学, 2004. TSUJI H, SAWADA T, TAKIZAWA M. Extraordinary Inundation Accidents in the Seikan Undersea Tunnel[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33(1):1-14. 蔡逸峰.世界上最长的穿越海峡的隧道:青函隧道[J].交通与运输, 2008(1):46-47. 张久长,史俊玲,曲云腾.日本青函隧道的技术特点及应用情况[J].中国铁路, 2017(5):91-97. 袁永才.隧道突涌水前兆信息演化规律与融合预警方法及工程应用[D].济南:山东大学, 2017. 黄震.流固耦合作用下岩体渗流演化规律与突水灾变机理研究[D].徐州:中国矿业大学, 2016. 周毅.隧道充填型管道构造突涌水机理与预测预警及工程应用[D].济南:山东大学, 2015. 王勇龙.特长岩溶隧道突水涌泥风险评价与控制研究[D].长沙:长沙理工大学, 2014. 马士伟.岩溶隧道涌突水地质灾害破坏机理与预警技术研究[D].北京:中国铁道科学研究院, 2009. 王成亮.铁路隧道岩溶突水灾害风险识别与预警方法研究[D].北京:北京交通大学, 2015. 解博.虹梯关隧道超前地质预报方法与预警机制研究[D].西安:长安大学, 2012. 葛颜慧.岩溶隧道突水风险评价与预警机制研究[D].济南:山东大学, 2010. 王升.隧道突涌水灾害区域性动态风险评估与预测预警及工程应用[D].济南:山东大学, 2016. 史付生.温度量测在石林隧道突水预报中的应用[J].国防交通工程与技术, 2012(3):68-69, 77. 何发亮,郭如军,李术才,等.岩体温度法隧道施工掌子面前方涌水预测预报探讨[J].现代隧道技术, 2007, 44(2):1-4, 15. 郭如军,何发亮,李术才,等.岩体温度法隧道施工掌子面前方含水体预报模型试验研究[J].现代隧道技术, 2008, 45(2):47-52, 84.
点击查看大图
计量
- 文章访问数: 90
- HTML全文浏览量: 7
- PDF下载量: 4
- 被引次数: 0