RESEARCH ON SEISMIC PERFORMANCES OF HYBRID STRUCTURE HEAT ABSORPTION TOWERS BY SHAKING TABLE TESTING
-
摘要: 作为安全等级一级的构筑物,吸热塔结构具有质心高、荷载大、低阻尼的特点,设备本身易产生较大附加弯矩,在地震作用下易产生鞭梢效应,因此对该结构抗震性能的研究十分重要。以某242.7 m高,下部为混凝土、上部为钢构件的混合型吸热塔为研究对象,根据SAP 2000有限元软件的模拟结果,确定缩尺模型的简化设计方案,按缩尺比1∶20设计并加工制作了等效缩尺模型,并进行三向地震动输入的振动台试验。测试了模型的动力特性及在不同水准地震波作用下结构的加速度、位移及应变响应,结合有限元分析验证了模型设计和加工的合理性,并分析了模型的破坏情况和地震响应规律。试验结果表明:在多遇、设防、罕遇地震作用下结构最大位移角分别为1/516、1/281、1/145,说明该类型结构抗震性能满足其性能设计要求。混凝土底部和中部变截面位置为相对薄弱环节,钢结构部分鞭梢效应明显,需要予以注意。Abstract: As a structure with the first safety grade, heat absorption towers are characterized by high positions of cantroids, large loads and low damping. The equipment itself is prone to produce large additional bending moment and whipping effect under the action of earthquake. Therefore, it is very important to study the seismic performances of the structure. A 242.7 m high hybrid structure of heat absorption tower with the concrete bottom and steel top was taken as the research object. According to the results of simulations by SAP 2000, the simplified design scheme of the scale model was determined. The equivalent scale model was designed and processed according to the scale ratio of 1/20 and the shaking table test was conducted under the actions of three directional earthquakes. The dynamic characteristics of the model, the response of acceleration, displacement and strain of the structure under different intensity earthquakes were tested. The rationality of model design and fabrication was verified by finite element analysis, and the damage of the model as well as the regularity of seismic responses were analyzed. The results showed that under the action of frequent occured earthquakes, fortification and rare occured earthquakes, the maximum displacement angles of the structure were 1/516, 1/281 and 1/145 respectively, it showed the seismic performances of the structure generally met the relevant design requirements. The concrete bottom and variable sections in the middle of the tower were relatively weak, and the whipping effect was obvious in steel structure part, which needed to be paid attention to.
-
何丽娟. 塔式电站中定日镜场的建模与仿真[D].南京:南京师范大学,2014. 张思思,董重成,陈玲. 太阳能散热器采暖与热水供应技术实验研究[J]. 节能技术, 2010, 28(2):173-177. 朱敦智,刘君,芦潮. 太阳能采暖技术在新农村建设中应用[J]. 农业工程学报, 2006, 22(10):167-170. SIVA REDDY V, KAUSHIK S C, RANJAN K R, et al. State of the Art of Solar Thermal Power Plants:A Review[J]. Renewable and Sustainable Energy Reviews, 2013(27):258-273. TIAN Y, ZHAO C Y. A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications[J]. Applied Energy, 2013, 104.DOI: 10.1016/j.apenergy.2012.11.051. 林春阳,戴君武,翁旭然. 超大冷却塔欠质量模型振动台、试验研究[J]. 世界地震工程, 2017, 33(1):110-116. 李检保,吕西林,卢文胜,等. 北京LG大厦单塔结构整体模型模拟地震振动台试验研究[J]. 建筑结构学报, 2006, 27(2):10-39. 黄襄云,周福霖,金建敏,等. 广州新电视塔结构模型振动台试验研究[J]. 土木工程学报, 2010, 43(8):21-29. 翁旭然,戴君武,胡杨. 超大型钢筋混凝土冷却塔模型地震模拟振动台试验研究[J]. 福州大学学报(自然科学版),2013,41(4):699-703. HIRAMA T, GOTO M, SHIBA K,et al. Seismic Proof Test of a Reinforced Concrete Containment Vessel (RCCV) Part 2:Results of Shaking Table Tests[J]. Nuclear Engineering and Design, 2005, 235:1349-1371. 黄思凝,郭迅,张敏政,等. 钢筋混凝土结构小比例尺模型设计方法及相似性研究[J]. 土木工程学报,2012, 45(7):31-38. MAJID Y. Investigation on the Seismic Performance of Steel-Strip Reinforced-Soil Retaining Walls Using Shaking Table Test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:216-232. 徐忠根,王翠坤,刘臣,等. 高耸钢结构模型模拟地震振动台试验研究[J]. 空间结构,2002,12(4):36-45. 刘记雄,黄俊,戴绍斌. 高耸烟囱结构在地震作用下的动力时程分析[J]. 建筑结构,2013,10(43):399-405. 杜东升,娄宇,李爱群,等. 高耸塔台结构竖向地震模拟振动台试验研究[J]. 特种结构, 2003, 20(2):46-48. 中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081-2002[S]. 北京:中国建筑工业出版社,2003. 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社,2010.
点击查看大图
计量
- 文章访问数: 134
- HTML全文浏览量: 6
- PDF下载量: 5
- 被引次数: 0