RESEARCH ON THE COMPRESSIVE CONSTITUTIVE MODEL OF SELF-COMPACTING CONCRETE AFTER FREEZE-THAW CYCLES
-
摘要: 寒冷地区服役的混凝土结构不可避免要受到冻融循环作用的影响。针对经历0次、50次、100次、150次、200次、250次和300次冻融循环后的自密实混凝土受压本构关系开展研究。结果表明:随着冻融循环次数的增加,试件的质量损失率增大,相对弹性模量降低,自密实混凝土能够满足F300的要求。试件的弹性模量和峰值应力在冻融前期变化不大,超过150次冻融循环后降幅明显;随着冻融循环次数的增加,峰值应变先降低后增大,横向变形系数有所减小。基于试验结果,建立了冻融循环后自密实混凝土的归一化受压本构模型,与试验结果吻合较好。Abstract: Concrete structures serving in cold regions are inevitably affected by freeze-thaw cycles. In this paper, the compressive constitutive relationship of self-compacting concrete after 0, 50, 100, 150, 200, 250 and 300 freeze-thaw cycles was investigated. The results showed that with the increasing freeze-thaw cycles, the mass loss of specimens increased, and the relative dynamic elastic modulus decreased. The self-compacting concrete could achieve the level of F300. The elastic modulus and peak stress of the specimen remained stable in the early stage of freeze-thaw test, and decreased significantly after 150 freeze-thaw cycles. As the number of freeze-thaw cycles increased, the peak strain decreased first and then increased, and the lateral deformation coefficient decreased. Based on the test results, the normalized compressive constitutive model of self-compacting concrete after freeze-thaw cycles was established, which was in good agreement with the experimental results.
-
Key words:
- freeze-thaw cycles /
- self-compacting concrete /
- constitutive model /
- compression /
- frost resistance
-
刘小洁, 余志武. 自密实混凝土的研究与应用综述[J]. 铁道科学与工程学报, 2006(2):6-10. EFNARC. The European Guidelines for Self-Consolidating Concrete[S]. UK:European Federation for Specialist Construction Chemicals and Concrete System, 2005. BSI. Concrete-Specification, Performance, Production and Conformity:BS EN 206:2013[S]. UK:British Standard Institution, 2013. ACI. Self-Consolidating Concrete:ACI 237R-07[S]. Farmington Hills, MI:American Concrete Institute, 2007. MEHTA P K. Durability of Concrete-Fifty Years of Progress?[J]. ACI Special Publication, 1991, 126:1-32. PERSSON B. Internal Frost Resistance and Salt Frost Scaling of Self-Compacting Concrete[J]. Cement and Concrete Research, 2003, 33(3):373-379. SZWABOWSKI J, LAZNIEWSKA-PIEKARCZYK B. Air-entrainment Problem in Self-Compacting Concrete[J]. Journal of Civil Engineering and Management, 2009, 15(2):137-147. ŁAŹNIEWSKA-PIEKARCZYK B. The Frost Resistance Versus Air Voids Parameters of High Performance Self Compacting Concrete Modified by Non-Air-Entrained Admixtures[J]. Construction and Building Materials, 2013, 48:1209-1220. TAVASOLI S, NILI M, SERPOUSH B. Effect of GGBS on the Frost Resistance of Self-Consolidating Concrete[J]. Construction and Building Materials, 2018, 165:717-722. 张萌, 刘清, 韩风霞, 等. 自密实混凝土冻融循环后基本力学性能试验研究[J]. 混凝土, 2016(12):22-24,28. WAWRZEŃCZYK J, MOLENDOWSKA A, KŁAK A. Frost Durability of Steel Fiber Self-Compacting Concrete for Pavements[J]. The Baltic Journal of Road and Bridge Engineering, 2016, 11(1):35-42. 龙广成, 杨振雄, 白朝能, 等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报, 2019, 47(7):855-864. 张士萍, 邓敏, 唐明述. 混凝土冻融循环破坏研究进展[J]. 材料科学与工程学报, 2008, 26(6):990-994. 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008(1):117-123,138. 胡琼, 颜伟华, 郑文忠. 自密实混凝土基本力学性能试验研究[J]. 工业建筑, 2008,38(10):90-93. 祝金鹏, 李术才, 刘宪波, 等. 冻融环境下混凝土力学性能退化模型[J]. 建筑科学与工程学报, 2009, 26(1):62-67. 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013, 16(1):17-23,32. 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1):1-12.
点击查看大图
计量
- 文章访问数: 77
- HTML全文浏览量: 5
- PDF下载量: 1
- 被引次数: 0