INFLUENCE OF ENVIRONMENTAL FACTORS UPON FUNDAMENTAL VIBRATION FREQUENCY OF CABLES FOR CABLE-STAYED BRIDGE
-
摘要: 基于斜拉桥拉索有限元模型,分析了考虑拉索工程参数时阻尼器、梁体振动和温度三种环境因素对拉索振动基频的影响。结果表明:当阻尼器安装位置一定时,阻尼器对长索的基频影响大于短索的基频;当索长和阻尼器位置一定时,阻尼器对截面直径大的拉索基频的影响小于截面直径小的拉索基频;由于车辆荷载导致斜拉桥梁体振动,使得拉索的基频存在动态波动,因此在索力测量时,应选择车辆较少的时段以获得更加准确的基频;高温和低温均影响拉索基频,即拉索温度越高,基频越小;拉索温度越低,基频越大。Abstract: Based on the finite element model of cable for cable-stayed bridge,it was analyzed the influence of three environmental factors including damper,beam vibration and temperature upon the cable's vibration fundamental frequency when considering engineering parameters of cable. The results show that when the damper's installation position is fixed,the influence of the damper upon the long cable's fundamental frequency is greater than the influence upon the short cable's. When the cable's length and the damper's position are fixed,the influence of the damper upon the fundamental frequency of the cable which has large section diameter is less than the one has small section diameter. The fundamental frequency of the cable has dynamic fluctuations because of the cable-stayed bridge's beam vibration caused by the vehicle load. To make the fundamental frequency more accurate,the time with a few vehicles may be selected when measuring the cable force. Temperature variation also has influence upon the fundamental frequency of the cable. Namely,the higher of the cable's temperature,the smaller of the fundamental frequency; the lower of the cable's temperature,the bigger of the fundamental frequency.
-
Key words:
- frequency method /
- fundamental frequency /
- damper /
- beam vibration /
- temperature
-
樊燕燕, 李子奇. 在役斜拉桥索力测试研究[J]. 城市道桥与防洪, 2009(9):78-80. [2] 乔燕, 孙传. 振动频率法测试斜拉桥拉索索力的应用研究[J].公路工程, 2009, 34(1):128-131. [3] Yen W H P,Mehrabi A B and Tabatabai H. Estimation of StayCable Tension Using a Non-destructive vibration Technique[J].Building to Last: Proceedings of the 15th Structures Congress,ASCE, 1997, 11(2):503-507. [4] M Irvin,T K Caughey. The Linear Theory of Free Vibration of aSuspended Cable[J]. Proc. Royal Society of London,England,Series A. 1974, 341(2):299-315. [5] Zui,Shinke T,Namita Y. Practical Formulas for Estimation ofCable Tension by Vibration Method[J]. Journal of StructuralEngineering, ASCE, 1996, 122(6):651-656. [6] Armin B,Mehrabi P E. Unified Finite Difference Formulation forFree Vibration of Cables[J]. Journal of Structural Engineering,ASCE, 1998, 124(11):1313-1322. [7] 任伟新, 陈刚. 由基频计算拉索索力的实用公式[J]. 土木工程学报, 2005, 38(11):26-31. [8] 王修勇, 谭艳. 斜拉桥拉索减震阻尼器对拉索索力测量的影响研究[J].振动与冲击, 2005, 27(11): 80-82. [9] Lilien J L. Vibration Amplitudes Caused by Parametric Excitationof Cable Stayed Structures[J].Jourmal of Sound and Vibration,1994, 174(1):69-90. [10] 毛志伟. 基于振动测试的斜拉桥索力识别研究[D]. 大连:大连理工大学, 2009. [11] 侯俊明, 彭晓彬, 叶方才. 斜拉索索力的温度敏感性[J].长安大学学报, 2007, 22(4):34-36.
点击查看大图
计量
- 文章访问数: 88
- HTML全文浏览量: 7
- PDF下载量: 114
- 被引次数: 0