ORTHOGONAL TEST RESEARCH ON COMPRESSIVE STRENGTH SIZE EFFECT OF ENGINEERED CEMENTITIOUS COMPISITES
-
摘要: 高延性水泥基复合材料(ECC)具有准应变硬化和多裂缝开展的性能,能够明显改善混凝土结构的抗震性能和耐久性。通过对32组192个试件进行抗压强度正交试验,研究ECC材料的立方体受压破坏过程,研究水胶比、纤维掺量、粉煤灰掺量和砂胶比4种因素对ECC立方体抗压强度尺寸效应的影响。试验结果表明:聚乙烯醇PVA纤维掺量增大,ECC抗压韧性明显提高;水胶比和纤维掺量是影响ECC抗压强度和尺寸效应的主要因素;水胶比增大,ECC抗压强度降低,尺寸效应系数增大;纤维掺量增大,试块抗压强度增大,尺寸效应系数增大。抗折试验表明,随着纤维掺量的增加,ECC材料的抗折强度显著提高。
-
关键词:
- 高延性水泥基复合材料 /
- 正交试验 /
- 抗压强度 /
- 尺寸效应
Abstract: Engineered cementitious composite(ECC) can significantly improve the seismic performance and durability of concrete structures, which has pseudo strain hardening and multiple cracking performances.Through 32 groups of 192 specimens for doing orthogonal test of compressive strength of ECC, it was studied the cube compression failure process, and further research on water-binder ratio, fiber content by volume, fly ash content and sand-binder ratio on the size effect of ECC cube compressive strength.The test results show that as PVA fiber content increases, ECC compressive toughness is improved obviously;water-binder ratio and fiber content are the main factors which affect the ECC compressive strength and size effect.When water-binder ratio increases, the compressive strength of ECC materials decreases and size effect coefficient increases.Fiber content increases, the compressive strength of test block increases and the size effect coefficient increases.The bending tests show that the fiber content by volume increases, the ECC flexural strength of the composite increases obviously. -
[2] Li V C, Wang S, Wu C.Tensile Strain-Hardening Behavior of?PVA-ECC [J].ACI Mater J,2001,98(6):483-492. Li V C.On Engineered Cementitious Composites ( ECC )-A?Review of the Material and Its Applications [J].Adv Concr?Technol,2003,1(3):215-230. [3] Li V C.Advances in ECC Research[J].ACI Special Publication?on Concrete: Material Science to Applications,2002,206(23):373-400. [4] Li V C, Leung CKY.Steady State and Multiple Cracking of Short?Random Fiber Composites [J].ASCE Journal of Engineering?Mechanics,1992,118(11):2246-2264. [5] 公成旭,张君.高韧性纤维增强水泥基复合材料的抗拉性能[J].水利学报,2008(3):361-366. [6] 田砾,朱桂红,郭平勋,等.PVA 纤维增强应变硬化水泥基材料韧性性能研究[J].建筑科学,2006(11):47-49. [7] 朱桂红,田砾,郭平勋,等.工程复合材料( ECC)的耐久性能试验研究进展[J].工程建设,2006(10):7-14. [8] 徐世烺.钢筋增强超高韧性水泥基复合材料 RUHTCC 受弯梁的计算理论与试验研究[J].中国科学,2009(5):878-896. [9] 徐世烺,蔡向荣,张英华.超高韧性纤维增强水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J].土木工程学报,2009,42(11):79-85. [10] 蔡向荣,徐世烺.UHTCC 单轴受压韧性的试验测定与评价指标[J].工程力学,2010,27(5):218-239. [11] GB /T 500812002普通混凝土力学性能试验方法标准[S]. [12] 李艳,梁兴文.PVA 纤维增强水泥基复合材料:性能与设计[J].混凝土,2009(12):54-57. [13] Li V C, Mishra D K, Wu H C.Matrix Design for Pseudo StrainHardening Fiber Reinforced Cementitious Composites[J].RILEM?J.Materials and Structures,1995,28(183):586-595. [14] 过镇海,时旭东.钢筋混凝土原理和分析[J].北京:清华大学出版社,2003. [15] 范向前,胡少伟,朱海棠,等.龄期和试件尺寸对钢纤维混凝土抗压强度的影响[J].混凝土与水泥制品,2011(4):42-45. [16] 李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008. [17] Song G.G Van Zijl.Tailoring ECC for Commercial Application [C]∥Proceedings of BEFIB.Varenna:2004(9):1391-1400.
点击查看大图
计量
- 文章访问数: 170
- HTML全文浏览量: 11
- PDF下载量: 133
- 被引次数: 0