ANALYTICAL SOLUTION AND NUMERICAL ANALYSIS FOR SIMPLY SUPPORTED BEAMS UNDER UNIFORMALY DISTRIBUTED LOADS BASED ON BIMODULAR THEORY
-
摘要: 放弃平截面假设,利用拉压分区的简化力学模型,导出均布荷载下双模量简支梁的解析解。基于双模量有限元数值迭代技术,引入具有收敛特性的剪切模量,建立同一问题的数值迭代模式,计算了不同拉压模量比值情形下的从浅梁到深梁的弯曲问题,数值计算结果表明,材料的拉压不同弹性模量特性对梁的弯曲应力和挠度有较大的影响。通过解析解计算结果和数值计算结果的对比分析,确定了所给出的解析解的合理适用范围。Abstract: In this paper, by using a simplified mechanical model on subarea in tension and compression, the analytical solution of bimodular simply supported beams under uniformly distributed loads was derived without the assumption of plane section.Based on the numerical iteration technique from bimodular finite element method, the shear modulus used for accelerating convergence was introduced and the numerical iterative program for the same problem was rebuilt.Using this program, bimodular beams in the cases of different ratios of elastic moduli in tension and compression, including from shallow beams to deep ones, are computed.The numerical result shows that different ratios of elastic moduli has great influences on the bending stresses and the vertical deflection of bimodular beams.By contrasting the numerical results with the analytical solutions, the applicable range of the analytical solutions presented in this paper was determined.
-
Key words:
- bimodulus /
- tension and compression /
- simply supported beam /
- stress /
- deflection
-
[2] 王珉,李永和.无腹筋锈蚀钢筋混凝土深梁承载力分析[J].工业建筑,2006,36(S1):847-849. 胡伟,胡明罡.等代刚架法计算深梁框架[J].工业建筑,2001,31(10):31-33. [3] 薛萍,郑宏,陆路.几何参数变化对钢筋混凝土深梁滞回性能的影响[J].工业建筑,2009,39(7):41-43,102. [4] Jones R M.Apparent Flexural Modulus and Strength of?Multimodulus Materials [J].Journal of Composite Materials,1976,10(4):342-354. [5] 阿姆巴尔楚米扬 C A.不同模量弹性理论[M].邬瑞锋,张允真,译.北京:中国铁道出版社,1986. [6] 姚文娟,叶志明.不同模量弯压柱的解析解[J].应用数学与力学,2004,25(9):901-909. [7] 姚文娟,叶志明.不同模量横力弯曲梁的解析解[J].应用数学与力学,2004,25(10):1014-1022. [8] He Xiaoting,Chen Shanlin,Sun Junyi.Applying the Equivalent?Section Method to Solve Beam Subjected Lateral Force and?Bending-Compression Column with Different Moduli [J].International Journal of Mechanical Sciences,2007,49(7):919-924. [9] 张允真,王志锋.不同拉压模量弹性力学问题的有限元法[J].计算结构力学及其应用,1989,6(1):236-245. [10] 叶志明,陈彤,姚文娟.不同模量弹性问题理论及有限元法研究进展[J].力学与实践,2004,26(2):9-14. [11] Sun Junyi,Zhu Haiqiao.Qin Shihong,et al.A Review on the?Research of Mechanical Problems with Different Moduli in Tension?and Compression [J].Journal of Mechanical Science and?Technology,2010,24(9):1845-1854. [12] 何晓婷,陈山林,孙俊贻.不同模量简支梁均布荷载下的弹性力学解[J].工程力学,2007,24(10):51-56. [13] 刘相斌,张允真.拉压不同模量有限元法剪切弹性模量及加速收敛[J].大连理工大学学报,2000,40(5):527-530. [14] He Xiaoting,Zheng Zhoulian,Sun Junyi,et al.Convergence?Analysis of a Finite Element Method Based on Different Moduli in?Tension and Compression [J].International Journal of Solids and?Structures,2009,46(20):3734-3740.
点击查看大图
计量
- 文章访问数: 135
- HTML全文浏览量: 2
- PDF下载量: 55
- 被引次数: 0