EXPERIMENTAL STUDY ON SMALL-STRAIN DYNAMIC PROPERTIES OF CEMENTED SOIL
-
摘要: 通过GDS共振柱,研究了不同围压、不同掺和比对水泥软黏土小应变动力特性(动剪切模量和阻尼比)的影响,得到了水泥软黏土小应变动力特性的变化规律。随着应变幅值的增加,动剪切模量逐渐衰减。最大动剪切模量随有效围压的增大而线性增大;在相同应变水平下,随着水泥土掺和比增大,有效围压对动剪切模量的影响逐渐减小。随着应变幅值的增加,阻尼比逐渐增大。相同应变水平下,试样的阻尼比随有效围压的增大而有轻微地减小。水泥掺和比对阻尼比的影响较小,随着水泥掺和比的提高,相同应变水平下试样的阻尼比有略微地升高。与动剪切模量相比阻尼比对有效围压和掺和比的变化不敏感。Abstract: The influence of confining and mixing ratio on small-strain dynamic properties(dynamic shear modulus and damping ratio)of cemented soft soil was studied through GDS resonance column, and the changing regularity of small-strain dynamic properties of cemented soft soil was obtained.The dynamic shear modulus decreased with the increased of strain amplitude.The maximum dynamic shear modulus increased linearly with the increase of confining pressure, the influence of confining pressure on dynamic shear modulus decreased with the increasd of mixing ratio under the same strain amplitude.The damping ratio increases with the increase of strain amplitude.Damping ratio decreased slightly with the increase of confining pressure.The influence of mixing ratios was damping ratio was small, damping ratio increased slightly with the increase of mixing ratio under the same strain amplitude.Comparing with the dynamic shear modulus, damping ratio was unsensitive to the variation of confining pressure and mixing ratio.
-
Key words:
- Cemented soil /
- resonance column /
- small-strain /
- dynamic shear modulus /
- damping ratio ?
-
龚晓南.复合地基理论及工程应用[M].北京:机械工业出版社,2004. [2] 李小军.对近年大震震害现象与工程地震问题研究的思考[J].国际地震动态,2001(8):26-31. [3] 易伟建,张冰.近场地震作用下框架结构的损伤机理[J].自然灾害学报,2007,16(2):112-117. [4] 林琼.水泥系搅拌桩复合地基实验研究[D].杭州:浙江大学,1985. [5] 刘一林,水泥搅拌桩复合地基变形特性研究[D].杭州:浙江大学,1991. [6] 王军,丁光亚,潘林有,等.静三轴试验中水泥土力学特性及本构模型研究[J].岩土力学,2010,31(5):1407-1412. [7] Dupas J M, Decker A. Static and Dynamic Properties of Sand Cement[J]. Journal of Geotechnical Engineering, ASCE,1979,105(3):419-436. [8] Airey D W, Fahey M. Cyclic Response of Calcareous Soil From the North-West Shelf of Australia[J]. Geotechnique,1991,41(1):101-121. [9] Nilo Cesar Consoli, Antnio Viana da Fonseca, Rodrigo Caberlon Cruz et al. Fundamental Parameters for the Stiffness and Strength Control of Artificially Cemented Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,56(6):1347-1353. [10] Acar Y B, El-Tahir A E. Low Strain Dynamic Properties of Artificially Cemented Sand[J]. J Geotech. Engrg.,1986,112(11):1001-1015. [11] Saxena S K, Avramidis A S, Reddy K R. Dynamic Moduli and Damping Ratios Forcemented Sands at Low Strains[J]. Can. Geotech. J.,1988,25(2):353-368. [12] 王军,蔡袁强,高玉峰.初始剪应力与频率对超固结软土变形试验研究[J].振动工程学报,2010(3):260-268. [13] 郑晓,郭玺.动荷载作用下水泥土小剪切模量试验研究[J].路基工程,2008,139(4):84-85. [14] 蔡袁强,梁旭,李坤.水泥土-土复合试样的动力特性[J].水利学报,2003(10):19-25. [15] 陈善民,王立忠,李挺,等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报:工学版,2000,34(3):398-403. [16] 邱高林,刘胜群,陈玉平.交通荷载作用下水泥土桩复合地基动力特性研究[J].铁道建筑,2007(11):72-75. [17] Kagawa, T. Moduli and Damping Factors of Soft Marine Clays[J]. Journal of Geotechnical Engineering, ASCE,1992,118(9):1360-1275. [18] Hardin BO, Dmevieh VP. Shear Modulus and Damping in Soils: Measurement and Parameter Effects[J]. Journal of Soil Mechanics and Foundation Division, ASCE,1972,98(6):603-624.
点击查看大图
计量
- 文章访问数: 126
- HTML全文浏览量: 6
- PDF下载量: 78
- 被引次数: 0