APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS
-
摘要: 为拓展小波理论在结构计算中的应用,研究采用Daubechies小波Galerkin法计算结构基本构件。现有的Daubechies小波Galerkin法所解出的位移曲线不连续,无法实现高精度计算。结合广义变分原理及Lagrange乘子法,对Daubechies小波Galerkin法进行改进,形成Daubechies条件小波Galerkin法并应用于结构计算。以结构中最为常见的基本构件杆、梁为例,阐述Daubechies条件小波Galerkin法的构成方法,并与常规有限元法及现有Daubechies小波Galerkin法进行比较。通过典型算例,验证Daubechies条件小波Galerkin法的计算精度。
-
关键词:
- 结构基本构件 /
- Daubechies小波 /
- Galerkin法 /
- 广义变分原理
Abstract: In order to promote the application of wavelet theory in structural computation, Daubechies wavelet Galerkin method is studied to computate the structural fundamental components.Because the displacement curve solved by the present Daubechies wavelet Galerkin method is not continuous, computation of high precision is hard to conduct.combining with generalized variational principle and Lagrangian multiplier method, Daubechies wavelet Galerkin method could be modified to form Daubechies conditional wavelet Galerkin method to be employed in structural computation.Taking the structural fundamental componentsbar and beam for examples, the construction of Daubechies conditional wavelet Galerkin method is elaborated.And the new method is compared with common FEM and present Daubechies wavelet Galerkin method at the same time.Typical computation examples were used to verify the accuracy of Daubechies conditional wavelet Galerkin method. -
程正兴.小波分析与应用实例[M].西安: 西安交通大学出版社,2006: 1-8. [2] 何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用[M].北京: 科学出版社,2006: 3-12. [3] 马军星.Daubechies 小波有限元理论及工程应用研究[D].西安: 西安交通大学,2003. [4] 韩建刚.小波有限元理论及其在结构工程中的应用[D].西安: 西安建筑科技大学,2003. : 98-118. [5] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8): 697-706. [6] 刘小靖,王记增,周又和.一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J].固体力学学报,2011,32(3): 249-257. [7] Daz A R.Wavelet-Galerkin Seheme for Analysis of Large-scaleProblems on Simple Domains [J].International Journal forNumerieal Methods in Engineering,1 999,44: 1599-1616. [8] Kim Y Y, Jang G W.Hat Interpolation Wavelet Based-ScaleGalerkin Method for Thin-Walled Box Beam Analysis [J].International Journal for Numerical Methods in Engineering,2 002,53: 1575-1592. [9] 林金木.有限单元法变分原理与应用[M].长沙: 湖南大学出版社,2 [10] 刘石泉,梁立孚.拉氏乘子法在广义变分原理和有限元素法中的应用[J].哈尔滨工程大学学报,2000,21(1): 29-32.
点击查看大图
计量
- 文章访问数: 63
- HTML全文浏览量: 6
- PDF下载量: 136
- 被引次数: 0