MONITORING AND ANALYSIS OF DEFORMATION OF DEEP ROCK EXCAVATION ADJACENT TO TUNNELS
-
摘要: 以重庆某开挖深度近30 m、周围存在邻近隧道的岩质深基坑工程为例,介绍了支护桩加锚索、支护桩加分阶预留岩墙两种围护体系及基坑监测方案,并结合数值模拟对主要监测成果进行分析。分析结果表明:支护桩加分阶预留岩墙作为邻近隧道岩质基坑围护体系非常有效,桩身变形主要集中于土层部分,对坡顶部位进行加固,可有效提高边坡整体稳定性;邻近隧道会改变周围地表最大沉降点位置,其位置与隧道拱顶相对应;由于受连续介质及隧道几何形态的影响,围岩会改变位移场传递的方向,隧道主要表现为横向变形。Abstract: According to the practical engineering of rock deep excavation with a depth about 30 m adjacent to thesubway tunnel in Chongqing, two kinds of supporting scheme were introduced. One was the retaining pile and anchorcable, and the other was the reserved rock wall and the retaining pile. Based on the numerical simulation, the mainmonitored results were analyzed. The result showed that deformation of rock excavation was small; the retaining pileand reserve rock wall could effectively control the displacement of the excavation in rock adjacent to tunnel. The maindeformation of supporting structures concentrated in soil strata in rocky area. The overall stability of the slope couldbe improved by reinforcing the top of slope. The position of the biggest settlement points influenced by the existenceof the adjacent tunnel was corresponding to the vault of tunnels, and the lateral deformation was dominant in thetunnel. The displacement field of the rock would changed owing to the inflnences of continuous media and the changeof tunnel geometric shape, the lateral deformation of the funnel was remarked.
-
[2] Vorster T E B,Klar A,Soga K,et al.Estimating the Effects of Tunneling on Existing Pipelines[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,13(11):1399-1410. 程斌,刘国彬.基坑工程施工对邻近建筑物及隧道的相互影响[J].工程力学,2000(3):486-491. [3] Sharma J S,Hefny A M.Effect of Iarge Excavation on Deformation of Adjacent MRT Tunnels[J].Tunneling and Underground Space Technology,1972(7):11-23. [4] Zheng Gang,Wei Shaowei.Numerical Analyses of Influence of Overlying Pit Excavation on Existing Tunnels.[J].Journal of Central South University of Technology,2008,15(S2):69-75. [5] 刘国彬,黄院雄,侯学渊.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报,2001,20(3):202-207. [6] 刘燕,刘国彬,刘涛.大型综合地铁换乘车站施工对周围环境影响分析[J].建筑结构,2008,38(4):94-98. [7] 《基坑工程手册》编辑委员会.基坑工程手册[M].北京:中国建筑工业出版社,2009. [8] 张永兴.边坡工程学[M].北京:中国建筑工业出版社,2008. [9] 张永兴.岩石力学[M].北京:中国建筑工业出版社,2008. [10] Susan M,Powrie W.Three-Dimensional Finite Element Analyses of Embedded Retaining Walls Supported by Discontinuous Earth Berms[J].Canadain Geotechnical Journal,2000(10):1062-1077. [11] Powrie W,Daly M P.Centrifuge Model Tests on Embedded Retaining Walls Supported by Earth Berms[J].Geotechnique,2002,52(2):89-106. 期刊类型引用(14)
1. 付静. 硅灰掺量对水泥混凝土性能和水化机理的影响. 粘接. 2025(02): 99-102 . 百度学术
2. 宋天威,左彦峰,林洛亦,郝桐. 基于改进的半经验超高性能混凝土配合比设计方法研究. 混凝土世界. 2024(01): 39-45 . 百度学术
3. 宋天威,左彦峰,姚越. 原材料对超高性能混凝土性能的影响研究综述. 混凝土世界. 2024(02): 71-81 . 百度学术
4. 刘毓彬,黄勇,鱼瑞,孙健,郭陆龙,梁心铭,左保玺. 天然沙漠砂混凝土配合比优化研究. 硅酸盐通报. 2024(12): 4406-4416 . 百度学术
5. 石伟,庞建勇. 不同矿物掺合料对混凝土力学性能影响研究. 安徽建筑. 2023(10): 105-106+119 . 百度学术
6. 于新民,王德弘,马一丹,刘晏廷,鞠彦忠. 玄武岩纤维和钢纤维活性粉末混凝土性能试验研究. 混凝土. 2023(11): 100-104 . 百度学术
7. 仲志武. 不同应力作用下粉煤灰混凝土徐变后力学性能研究. 工业建筑. 2022(04): 152-157+132 . 本站查看
8. 罗俊,陈鸣,秦明强. 配筋活性粉末混凝土梁抗剪承载力分析. 中外公路. 2021(01): 270-274 . 百度学术
9. 叶庆阳,薛聪聪,余敏,吴明洋. 超高性能混凝土配合比设计与抗压强度试验研究. 工业建筑. 2020(03): 124-130+141 . 本站查看
10. 李广燕. 活性粉末混凝土力学性能的研究. 粘接. 2020(09): 119-122 . 百度学术
11. 黄政宇,贾佳. 材料组成对常温养护UHPC基体性能的影响. 公路工程. 2019(01): 51-56 . 百度学术
12. 孙世国,鲁艳朋. 超高性能混凝土国内外研究进展. 科学技术与工程. 2018(20): 184-199 . 百度学术
13. 陶毅,张海镇,王秋维,史庆轩. 基于最紧密堆积理论制备活性粉末混凝土的试验研究. 云南大学学报(自然科学版). 2017(01): 107-114 . 百度学术
14. 王钧,文慧. 基于新规范的活性粉末混凝土配合比研究综述. 山西建筑. 2016(17): 108-110 . 百度学术
其他类型引用(28)
-

计量
- 文章访问数: 102
- HTML全文浏览量: 8
- PDF下载量: 104
- 被引次数: 42