EXPERIMENTAL STUDY ON THE IMPACT TOUGHNESS OF Q460-C HIGH-STRENGTH CONSTRUCTION STEEL AT LOW TEMPERATURE
-
摘要: 高强度钢材在建筑行业中逐渐被应用,而随着钢材强度的增大,其韧性性能会有一定程度的退化,特别是在低温环境中更加明显。因此,有必要研究高强度建筑钢材的冲击韧性。通过对14 mm厚的高强钢材Q460-C进行低温下的冲击韧性试验,并将其夏比冲击功值与60,90,120,150 mm厚Q345的AKV值进行比较分析。结果显示,Q460-C的冲击韧性随温度的降低而下降,在20~-20℃,14 mm厚Q460-C钢材的低温冲击功值依次低于同温度下的150,120,90,60 mm厚Q345的AKV值,在低于―20℃时,Q460钢材的强度对其低温脆性的影响没有Q345钢材的厚度对其低温脆性的影响明显。同时,还利用Boltzmann函数对试验结果进行拟合分析,得到Q460-C钢材的韧脆转变温度为-11.1℃;最后对不同温度点下的冲击试件断口进行扫描电镜分析,观察到-20℃下冲断的试件断口形貌有相当的脆性特征,基本已完成了从韧性向脆性断裂的转变。试验表明,Q460-C钢材的低温脆性特征明显,应引起足够重视。Abstract: High strength steel has been gradually applied in construction industry.As the strength of steel increases,the property of toughness degrades to some extent,particularly in the case of application at low temperature.Therefore,it is necessary to study the impact toughness of high strength steel.Impact toughness tests of 14 mm thick Q460-C steel at low temperature were performed,Charpy impact power level was compared with that of 60,90,120,and 150 mm thick Q345 steel at the same temperature respectively,besides the scanning electronic microscope of the Charpy-type specimen fracture surfaces with different temperature points were analyzed.And the results showed that:1)The impact toughness of Q460-C steel decrease with the descending temperature;2)Between 20 ℃ and-20 ℃,the low temperature impact power level of 14 mm thick Q460-C was lower than that of 150,120,90 mm and 60 mm thick Q345 at the same temperature;3)The influence of steel strength on low temperature brittleness of Q460-C was less obvious than that of steel depth on that of Q345;4)The fracture appearances of Charpy-type specimens of Q460-C,which break at-20 ℃ had finished the transition form ductile to brittle on the whole,with a large of significant brittle characteristics.Meanwhile,a Boltzmann function fit analysis was made on Charpy impact test results of Q460-C,obtaining-11.1 ℃ as the brittle ductile transition temperature.Test results showed that the low temperature brittleness of Q460-C and its welding seam were apparent,to which much attention should be paid.
-
Shi G,Ban H Y. Application and Recent Research Advances of High Strength Steel Structures[A].北京,2009.69-75. Pocock G. High Strength Steel Use in Australia,Japan and the US[J].Structural Engineer,2006,(11):27-30. 王元清,林云,张延年. 高强度钢材Q460-c低温力学性能试验[J].沈阳建筑大学学报(自然科学版),2011,(04):646-652. 林云,王元清,张延年. 高强度钢及其连接焊缝断裂韧性的研究进展[J].钢结构,2010,(增刊):105-114. Brockenbrough R L,Merritt F S. Structural Steel Designer' Handbook[M].New York:McGraw-Hill,1994. 7 王元清,王晓哲,武延民. 结构钢材低温下主要力学性能指标的试验研究[J].工业建筑,2001,(12):63-66. 王元清,奚望,石永久. 钢轨钢材低温冲击功的试验研究[J].清华大学学报(自然科学版),2007,(09):1414-1417. GB/T229--2007金属材料夏比摆锤冲击试验方法[S]. GB297598钢及钢产品力学性能试验取样位置及试样制备[S]. GB/T19879--2005建筑结构用钢板[S]. 张银花,陈朝阳,周清跃. 钢轨屈服强度指标取值研究[J].铁道建筑,2006,(03):92-94. 王元清,胡宗文,石永久. 结构钢厚板低温冲击韧性试验研究[J].哈尔滨工程大学学报,2010,(09):1179-1184. 赵建平,张秀敏,沈士明. 材料韧脆转变温度数据处理方法探讨[J].石油化工设备,2004,(04):29-32.
点击查看大图
计量
- 文章访问数: 264
- HTML全文浏览量: 10
- PDF下载量: 272
- 被引次数: 0