THE METHOD OF SOLVING UNSTABLE EQUILIBRIUM STATES OF CABLE-NET STRUCTURES
-
摘要: 索网结构的施工张拉成形过程是不稳定平衡状态求解过程,在此过程中机构和弹性位移相互耦合。基于索无应力长度,采用解析抛物线索单元,考虑弹性变形和张力关系;利用铰接体系平衡矩阵理论求解节点不平衡力向量,避免机构刚度矩阵奇异求解难题;最后,用动力松弛法求解将这一耦合问题解耦。算例表明,该方法能求解张力结构成形过程中的不稳定平衡状态,且通过改变主动索无应力长度可模拟施工张拉成形过程;当无节点荷载或节点荷载很小时,抛物线单元与杆单元分析差别较大,表明采用抛物线索单元是合理的。Abstract: The tension forming process of cable-net structures in construction is the process of solving unstable equilibriums,in which the mechanism and elastic deformation are coupled.On the basis of unstressed cable length,an analytical parabolic cable element is used to consider the elastic tension and deformation.The unbalanced nodal force vector is evaluated by using the equilibrium matrix theory of the pin joint system,which avoids solving the singular stiffness matrix of a mechanism.The dynamical relaxation method is used to solve the nonlinear equation by making the coupling problem decoupled.Numerical examples indicate that the proposed algorithm is capable of solving the unstable equilibrium and simulating the tension forming process in construction by changing the unstressed length of active cables.When there is no load or the load is small,the analytical results of employing parabolic elements and link elements are significantly different,which shows the fidelity of parabolic cable elements.
-
Key words:
- cable-net /
- dynamic relaxation /
- unstable equilibrium /
- parabolic cable element
-
沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,2002:1-36. [2] Geiger D H. The Design and Construction of Two Cable Domes for?the Korean Olympics[C]//Shells Membranes and Space Frames,?Proc. LASS Symposium.1986:265-272. [3] Geiger D H. Design Details of an Elliptical Cable Dome and a?Large Span Cable Dome(210 m)Under Construction in the?United States[C]//Proceedings of IASS-ASCE International?Symposium. Bangalore:1988. [4] Jeon B S, Lee J H. Cable Membrane Roof Structure with Oval?Opening of Stadium for 2002 FIFA World Cup in Busan[C]//Proceedings of Sixth Asian-Pacific Conference on Shell and?Spatial Structures. Soul:2000:1037-1042. [5] Seok H B. An Introduction to Inchon Munhank 2002 World Cup?Stadium[C]//Proceedings of Sixth Asian-Pacific Conference on?Shell and Spatial Structures. Soul:2000:1033-1036. [6] Fuller R B. Tensile-Integrity Structures;U S,3063521[P].1962. [7] 袁行飞,董石麟.索穹顶结构施工控制反分析[J].建筑结构学报,2001,22(2):75-79. [8] 张其林,罗晓群,杨晖柱.索杆体系的机构运动与弹性变形的混合问题[J].计算力学学报,2004,21(4):470-474. [9] 钱若军,苏波,林智斌.工程结构中的几何位移分析理论?方法和应用研究[J].工程力学,2008,25(8):70-76. [10] 邓华,姜群峰.环形张力索桁罩棚结构施工过程的形态分析[J].土木工程学报,2005,38(6):1-7. [11] Otter J R H. Computations for Prestressed Concrete Reactor?Pressure Vessels Using Dynamic Relaxation[J].Nuclear?Structure Eng,1964(1):61-75. [12] Barnes M R. Dynamic Relaxation Analysis of Tension Network[M].London;Int. Conf. Tension Roof Structures,1974. [13] 钱若军,杨联屏.张力结构的分析?设计?施工[M].南京:东南大学出版社,2003:160-162. [14] Jayaraman H B. A Curved Element for the Analysis of Cable?Structures[J].Computers and Structures,1981,14(3/4):?325-333.?
点击查看大图
计量
- 文章访问数: 46
- HTML全文浏览量: 4
- PDF下载量: 28
- 被引次数: 0