NONLINEAR FINITE ELEMENT ANALYSIS OF WAFFLE COMPOSITE SLAB STRUCTURE SYSTEM CONTAINING STEEL FIBER
-
摘要: 钢纤维混凝土密肋复合楼盖将材料的复合与结构的复合有机的结合,具有良好的受力及保温隔热等性能。通过利用非线性有限元方法,对钢纤维密肋复合楼盖结构体系的受力性能进行了全过程分析,并通过改变钢纤维含量进行参数讨论。建模过程中钢纤维的作用主要通过修改混凝土的本构关系及弹性模量等参数来体现,同时不考虑钢纤维与混凝土间的粘结与滑移。结果表明,添加钢纤维能明显减小结构的变形,提高结构的抗裂性能。在结构上部边缘处没有形成塑性铰线前,不同钢纤维含量下结构不同位置处应力分布规律基本相同,但当结构塑性铰线逐渐形成后由于内力重分布的影响,钢纤维含量对结构的应力分布影响较大。此外,钢纤维含量对结构裂缝的开展及分布规律影响不大,但由于钢纤维提高了混凝土的抗拉强度,所以对结构裂缝的分布范围有一定的影响。Abstract: Steel fiber concrete waffle composite slab system includes material composite and structure typecomposite, which has good mechanical and thermal insulation properties. Nonlinear finite element analysis for themechanical properties of the whole process on the composite structure system was presented, and by changing thefiber content the parameter were discussed. The functions of steel fibers were considered mainly through modificationof the constitutive relationship of concrete and elastic modulus and other parameters, without consideration of the bondand slip between steel fiber and concrete in the finite element analysis model to simplify calculation. The analysis results showed that the structural deformation and crack resistance could be improved significantly even adding less steel fiber in concrete. The stress of different positions in different steel fiber content were basically the same before the formation of upper plastic hinge line, but after the formation of plastic hinges line, the influence of steel fiber content on stress distribution was larger because of the influence of redistribution of internal forces. In addition, the steel fiber volume fraction on the developing and distribution of the cracks had little effect. Because steel fiber can increase the tensile strength of concrete, which had a certain impact on the distribution of structural cracks.
-
[2] 朱建华.钢筋混凝土双向密肋夹芯楼盖的试验与理论研究[D].长沙: 湖南大学,2002: 2-6. Qiu jisheng.Pseudo-Plate Method for the Design of High-Strength Concrete Prestressed Waffle Slab Containing Steel Fiber[C]∥2009 年全国博士生论坛(土木工程) .长沙: 2009: 386-391. [3] 沈蒲生.楼盖结构设计原理[M].北京: 科学出版社,2003. [4] Qiu Jisheng.Study on Calculation Method of the Ultimate Torque of Steel Fiber Concrete Edge Beams in Torsion[C]/ / the 3rd International Conference on the Concrete Future.Yantai: 2008 :333-340. [5] 邱继生,姚谦峰,黄炜.复合扭转作用下钢纤维混凝土梁极限扭矩计算方法的研究[J].西安建筑科技大学学报: 自然科学版,2010,42(4):526-531. [6] 邱继生,姚谦峰.纯扭作用下钢纤维混凝土边梁抗扭承载力计算方法的研究[J].工业建筑,2010,40(1):78-81. [7] Padmarajaiah S K,Ramaswamy A.A Finite Element Assessment of Flexural Strength of Prestressed Concrete Beams with Fiber Reinforcement[J].Cement & Concrete Composites,2002 (24) :229-241. [8] Fanella D A,Naamain A E.Stress-Strain Properties of Fiber Reinforced Mortar in Compression[J].ACI Journal,1985,82(4):475-483. [9] Mansur M A,Chin M S,Wee T H.Stress-Strain Relationship of High-Strength Fiber Concrete in Compression [J].Journal of Materials in Civil Engineering,1999,11(1):21-29.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 10
- PDF下载量: 37
- 被引次数: 0