STRESS-STRAIN RELATIONSHIP FOR STRUCTURAL LOOSE SAND BASED ON UNIFIED HARDENING MODEL
-
摘要: 在临界状态理论的基础上,通过引入修正屈服函数的结构性参数,可更好地描述松砂的塑性变形特性。通过引入状态参数来调整硬化参数和剪胀方程,从而更好地反映松砂的剪缩特性和对密度、有效主应力的双重依赖性。同时,模型采用砂土等压固结线和临界状态线在有效应力幂函数平面内呈线性关系的特性,更准确地反映了砂土的应力-应变特性。通过数值模拟结果与试验结果对比,验证了模型的有效性。Abstract: Based on the critical state theory, a constitutive model was proposed for structural loose sand. The structural parameter was used to revise the yield function, thereby predicting the plastic deformation of loose sand more appropriately. Another parameter was used to adjust the hardening parameter and dilatancy equation, thus giving a better description of contraction behavior for loose sand. The introduction of the parameters emphasized the dependency on both density and effective principal stress of sand. Linear isotropic consolidation and critical state lines were applied in void ratio versus the power of effective mean stress space, and more accurately reflected the stressstrain behavior of sand. A comparison between model simulations and experimental results showed the validity of the proposed model.
-
Key words:
- loose sand /
- critical state /
- structural parameter /
- hardening parameter /
- constitutive model
-
[2] Cai Z Y,Li X S.Deformation Characteristics and Critical State of Sand[J].Chinese Journal of Geotechnical Engineering,2004,26(5) . Been K, Jefferies M G.A State Parameter for Sands [J].Geotechnique,1985,35(2):99-112. [3] Jefferies M G.Nor-Sand: A Simple Critical State Model for Sand [J].Geotechnique,1993,43(1):91-103. [4] Manzari M T,Dafalias Y F.A Critical State Two-Surface Plasticity Model for Sand[J].Geotechnique,1997,47(2):255-272. [5] Li X S,Dafalias Y F.Dilatancy for Cohesionless Soils[J].Geotechnique,2000,50(4):449-460. [6] Li X S,Dafalias Y F.A Constitutive Framework for Anisotropic Sand Including Non-Proportional Loading [J].Geotechnique,2004,54(1):41-55. [7] Ling H I,Yue D,Kafalias V,et al.Anisotropic Elatoplastic Bounding Surface Model for Cohesive Soils [J].Journal of Geotechnical and Geoenvironmental Engineering,2006,128(7) :748-758. [8] Stamatopoulos C A.An Experimental Study of the Liquefaction Strength of Silty Sands in Terms of the State Parameter[J].Soil Dynamics and Earthquake Engineering,2010,30(8):662-678. [9] Yao Y P,Matsuoka H,Sun D A.A Unified Elastoplastic Model for Clay and Sand with the SMP Criterion [C]∥ Proc.,8th Australia-New Zealand Conf.on Geomechanics.1999,2: 997-1003. [10] Yao Y P,Sun D A,Matsuoka H.A Unified Constitutive Model for Both Clay and Sand with Hardening Parameter Independent on Stress Path[J].Computers and Geotechnics,2008,35: 210-222. [11] Yao Y P,Sun D A,Luo T.A Critical State Model for Sands Dependent on Stress and Density[J].International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:323-337. [12] Li X S,Wang Y.Linear Representation of Steady-State Line for Sand [J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(12):1215-1217. [13] Richart F E,Hall J R,Wood R D.Vibrations of Soils and Foundations[M].NJ: Prentice-Hall,Englewood Cliffs,1970. [14] Matsuoka H,Yao Y P,Sun D A.The Cam-Clay Models Revised by the SMP Criterion[J].Soils and Foundations,1999,39 (1) :81-95. [15] Yao Y P,Hou W,Zhou A N.UN Model: Three-Dimensional Unified Hardening Model for Overconsolidated Clays [J].Geotechnique,2009,59(5):451-469.
点击查看大图
计量
- 文章访问数: 153
- HTML全文浏览量: 8
- PDF下载量: 36
- 被引次数: 0