ANALYSES OF THE DYNAMIC RESPONSES OF THE THIN-WALLED SHELL UNDER EXTERNAL IMPACT
-
摘要: 随着现代工业技术的发展,大量新型、高强度的轻型薄壳结构广泛应用于国防及民用工业的各个领域,因此有关薄壁球壳受冲击荷载的动力响应问题的计算理论迫切地需要充实和完善。目前对于球壳问题的大多数研究还仅限于静力分析且局限于数值解法或近似分析法,对于薄壁球壳结构受冲击荷载的动力分析还不多见。采用汉克尔积分变换和贝塞尔函数,求解了薄壁球壳在外部冲击荷载作用下动力响应问题,结果表明:在结构外部表面承受局部冲击荷载作用下,薄壁球壳径向振动具有非周期性的特点,其假定频率和周期一致。应力状态具有非周期性的衰减特点,可根据明显的极值顺序来确定。结构的动力破坏由两步确定;第一步以拉-压平面波的作用为条件,平面波直接在冲击区下沿厚度传播,结构的强度特性改变;第二步以弯曲应力的作用为条件,导致结构的最终破坏。Abstract: With the development of the modern industry,abundant new type and high strength thin-walled shell structures were applied in most fields of military and civilized industry,therefore,it is necessary to enrich and perfect the theory for the calculation of the dynamic responses of the thin-walled shell under impact load. While the existing investigations on thin-walled shell are limited to staic situation based on numerical and approximate analytical methods,less researches were carried out on the dynamic responses of thin-walled shell under impact load. It is indicated that under the local action of the external impact,the radial oscillation of the thin-walled shell is nonperiodically,which agrees with its assumed frequency and periodicity. The stress state was also attenuated nonperiodically,which can be ordered by its extremes. The dynamic failure of the structure can be confirmed by two steps: Firstly, the strength properties of the structure were changed when the tension-compression plane wave propagated along the transverse direction. Secondly,the final failure of the structure occurred under the action of the flexure stresses.
-
Key words:
- blast load /
- tin sphere shell /
- dynamic response
-
张守忠. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社,1993:1-6. [2] Fundamentals of Protective Design for Conventional Weapons,department of the Army,Waterway Experimental Station,Corps of Engineers,November,1986: 75-78. [3] Euler. L De motu vibratorio tympanorum[J]. Novi comment aril Acad. Petropolit,1766,10: 243-260. [4] Bernoulli J. Essai theorique surles vibrations de plaques elastiques rectangulaires et libres [J]. Nova Acta Acad.Petropolit,1789: 5. [5] Todhunter J,Pearson K. History of the Theory of Elasticity and of the Strength of Materials[J]. New York,1960(1) :147. [6] Cauchy A. Sur I equilibrbe et le mouvement dune plaque solide[J]. Exercice de mathematic,1828(3) . [7] Poisson S,Memoire sur I. Equilibre et le movement des coreps solides[J]. Paris,Mem. de I,Acad. Sci,1829(8) . [8] Clebsch A. Theorie de I elatricite des corps solides,avec des notes etendues de Saint-Venant[J]. 1883: 687-706. [9] Галёркин В Г. Упругие тонкие плнтщ[J]. Госстройнэдат,1933. [10] Timoshenko S. On the Stability of Compressed Plate[J]. Bull.Polytech. inst. Kiev,1907. Ann. Ponts chausses,1913 ( 4 ) :372. [11] Aron H. Das Gleichgewicht und die Bewegung einer unendlich dunnen beliebig gekrummten elastishen Schale[J]. Journ. Fur reine und ang. Math. ,Bd. 78,1874. [12] 吉布森J E. 薄壳计算与理论[M]. 北京:国防工业出版社,1989. [13] 陈力生. 数学物理方程[M]. 南京:东南大学出版社,2002.
点击查看大图
计量
- 文章访问数: 92
- HTML全文浏览量: 3
- PDF下载量: 52
- 被引次数: 0