中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时频联合分析方法在土木工程中的研究现状

石志晓 李昕 周晶

石志晓, 李昕, 周晶. 时频联合分析方法在土木工程中的研究现状[J]. 工业建筑, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020
引用本文: 石志晓, 李昕, 周晶. 时频联合分析方法在土木工程中的研究现状[J]. 工业建筑, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020
Shi Zhixiao, Li Xin, Zhou Jing. RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020
Citation: Shi Zhixiao, Li Xin, Zhou Jing. RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 75-80,109. doi: 10.13204/j.gyjz200505020

时频联合分析方法在土木工程中的研究现状

doi: 10.13204/j.gyjz200505020
基金项目: 

国家自然科学基金重点项目(50439010);国家自然科学基金面上项目(50378012);辽宁省博士启动基金(2001102094).

详细信息
    作者简介:

    石志晓 女 1974年1月出生 博士研究生

  • 中图分类号: TU317

RECENT STUDY OF THE APPLICATION OF THE JOINT TIME-FREQUENCY ANALYSIS METHODS IN CIVIL ENGINEERING

  • 摘要: 时频联合分析方法因能同时提供信号的局部时频特征,适于分析非平稳信号而在土木工程领域得到了极大应用。线性变换、双线性变换和Hilbert-Huang变换是土木工程中常用的时频联合分析方法。根据时频分析方法的理论,将其应用于人工地震波模拟、结构动力反应分析和可靠性估计、结构参数识别及损伤检测等领域。通过对其在土木工程中的应用进行总结,提出了存在的问题,探讨了进一步研究的方向。
  • Shie Qian, Dapang Chen. Joint Time-Frequency Analysis. IEEE Signal Processing Magazine, 1999,16(2) :53 ~ 67;
    [2] Leon Cohen. Time-Frequency Distributions- a Review. Proceedings of the IEEE, 1989, 77(7): 941 ~ 981;
    [3] Norden E. Huang Z S, Steven R, Long, et al. The Empirical mode Decomposition and the Hilbert Spectrum for Nonlinear and NonStationary Time Series Analysis. Proc. R. Soc. A, 1998,454: 903 ~ 995;
    [4] Junjie Wang, Liehu Fan, Shie Qian, Jing Zhou. Simulations of NonStationary Frequency Content and Its Importance to Seismic Assessment of Structures. Earthquake Engineering and Structural Dynamics, 2002,31:993 ~ 1 005;
    [5] Conte J P, Peng B F. Fully Nonstationary Analytical Earthquake Ground-Motion Model. Journal of Engineering Mechanics, 1997, 123(1): 15~24;
    [6] 曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究.土木工程学报,2002,35(4):40~46;
    [7] Sushovan Mukherjee,Gupta Vinay K. Wavelet-Based Characterization of Design Ground Motions. Earthquake Engineering and Structural Dynamics, 2002, 31:1 173~1 190;
    [8] Biswajit Basu, Gupta Vinay K. Seismic Response of SDOF System by Wavelet Modeling of Nonstationary Processes. Journal of Engineering Mechanics, 1998,124(10): 1 142 ~ 1 150;
    [9] Biswajit Basu. Gupta Vinay K. Stochastic Seismic Response of SingleDegree-of-Freedom Systems through Wavelets. Engineering Structures,2000, 22:1 714 ~ 1 722;
    [10] Jun Lyama, Hitoshi Kuwamura. Application of Wavelets to Analysis and Simulation of Earthquake Motions. Earthquake Engineering and Structural Dynamics, 1999,28:255 ~ 272;
    [11] Biswajit Basu, Gupta Vinay K. Non-Stationary Seismic Response of MDOF Systems by Wavelet Transform. Earthquake Engineering and Structural Dynamics, 1997, 26:1 243 ~ 1 258;
    [12] Biswajit Basu, Gupta Vinay K. Wavelet-Based Analysis of NonStationary Response of a Slipping Foundation. Journal of Sound and Vibration, 1999, 222(4) :547 ~ 563;
    [13] Biswajit Basu, Gupta Vinay K. Wavelet-Based Non-Stationary Response Analysis of Friction Based-Isolated Structure. Earthquake Engineering and Structural Dynamics, 2000,29:1 659 ~ 1 676;
    [14] 曹晖,赖明,白绍良.基于小波分析的结构动力可靠度估计.世界地震工程,2000,16(4):70~77;
    [15] 樊剑,唐家祥.基于离散小波变换的多自由度结构非平稳随机响应计算.振动工程学报,2001,14(4):438~441;
    [16] 樊剑,唐家祥.基于离散小波变换的滑移隔振结构非平稳随机响应计算.工程力学,2002,19(2):73~77;
    [17] 段雪平,朱宏平.地震作用下结构动力响应的小波分析.华中理工大学学报,2000,28(11):75~78;
    [18] 肖梅岭,叶燎原.连续小波变换用于结构地震反应分析.世界地震工程,2001,17(4):79~83;
    [19] 周太全,李光霞,贾军波.基础隔震结构在地震作用下动力响应小波分析.工业建筑,2003,33(6):21~23;
    [20] 应益荣,梁家荣.单质点弹性体系的小波变换.西北建筑工程学院学报,1999(1):75~80;
    [21] Zhang Ray Ruichong, Shuo Ma, Erdal Safak, Stephen Hartzell. HilbertHuang Transform Analysis of Dynamic and Earthquake Motion Recordings.Journal of Engineering Mechanics, 2003, 129(8) :861 ~ 875;
    [22] Tso-Chien Pan, Chin Long Lee. Application of Wavelet Theory to Identify Yielding in Seismic Response of Bi-Linear Structures.Earthquake Engineering and Structural Dynamic, 2002, 31:379 ~ 398;
    [23] Staszewski W J. Identification of Damping in Mod Systems Using TimeScale Decomposition. Journal of Sound and Vibration, 1997, 203(2):283 ~ 305;
    [24] Lamarque C H, Pernot S, Cuer A. Damping Identification in MultiDegree-of Freedom Systems via a Wavelet-Logarithmic Decrement-Part1: Theory. Journal of Sound and Vibration. 2000, 235:361 ~ 374;
    [25] Slavic J, Simonovski I, Boltezar M. Damjping Identification Using a Continuous Wavelet Transform: Application to Real Data. Journal of Sound and Vibration, 2003, 262:291 ~ 307;
    [26] Kijeswski T, Kareem A. Wavelet Transform for System Identification in Civil Engineering Computer Aided Civil and Infrastructure Engineering.2003, 18:339 ~ 355;
    [27] Zhang Z Y, Hua H X, Xu X Z, Huang Z. Modal Parameter Identification through Gabor Expansion of Reponse Signals. Journal of Sound and Vibration, 2003, 266(5) :943 ~ 955;
    [28] oseph Lardies, Stephane Gouttbroze. Identification of Modal Parameters Using the Wavelet Transform. International Journal of Mechanical Sciences, 2002, 44: 2 263 ~ 2 283;
    [29] 于开平,邹经湘.模态参数识别的小波变换方法.宇航学报,1999,20(4):72~76;
    [30] Bonato P, Ceravolo R, Stefano A De. Time-Frequency and Ambiguity Function Approaches in Structural Identification. Journal of Engineering Mechanics, 1997, 123:1 260 ~ 1 267;
    [31] Bonato P, Ceravolo R, Stefano A De. The Use of Wind Excitation in Structural Identification. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74 - 76:709 ~ 718;
    [32] Bonato P, Ceravolo R, Stefano A De, Molonari F. Use of Cross-TimeFrequency Estimators for Structural Identification in Non-Stationary Conditions and under Unknown Excitation. Journal of Sound and Vibration, 2000,237(5):775 ~ 791;
    [33] Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 1:Normal Modes. Earthquake Engineering and Structure Dynamics, 2003, 32:1 443 ~ 1 467;
    [34] Yang Jann N, Ying Lei, Shuwen Pan, Norden Huang. System Identification of Linear Structures Based on Hilbert-Huang Spectral Analysis. Part 2: Complex Modes. Earthquake Engineering and Structure Dynamics, 2003,32:1 533 ~ 1 554;
    [35] 续秀忠,李忠付,等.非平稳环境激励下线性结构在线模态参数辨识.上海交通大学学报,2003,37(1):118~121;
    [36] 韩海明,沈涛虹,宋汉文.工况模态分析的EMD方法.振动与冲击,2002,21(4):69~71;
    [37] 陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用.振动工程学报,2003,16(3):383~388;
    [38] Michanel Feldman. Non-Linear System Vibration Analysis Using Hilbert Transform-I. Free Vibration Analysis Method FREEVIB'. Mechanical Systems and Signal Processing 1994, 8(2) :119 ~ 127;
    [39] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Time-Frequency Analysis of Nonlinear System: the Skeleton Linear Model and the Skeleton Curves. Journal of Sound and Acoustics, 2003, 125:170 ~ 177;
    [40] LiLi Wang, Jinghui Zhang, Chao Wang, Shiyue Hu. Identification of Nonlinear Systems through Time-Frequency Filtering Technique. Journal of Sound and Acoustics. 2003, 125:199 ~ 204;
    [41] 续秀忠,张志谊,华宏星.应用时频分析方法辨识时变系统的模态参数.振动工程学报,2003,16(6):358~362;
    [42] Yoshihiro Kitada, Identification of Nonlinear Structural Dynamic Systems Using Wavelets. Journal of Engineering Mechanics, 1998, 124(10) :1059~1066;
    [43] Ghanem R, Romeo F. A Wavelet-Based Approach for the Identification of Linear Time-Varying Dynamical Systems. Journal of Sound and Vibration, 2000, 234(4) :555 ~ 576;
    [44] Ghanem R, Romeo F. A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems. International Journal of Non-Linear Mechanics, 2001,36: 835 ~ 859;
    [45] Staszewski W J. Identification of Non-Linear Systems Using Multi-Scale Rides and Skeletons of the Wavelet Transform. Journal of Sound and Vibration, 1998,214(4) :639 ~ 658;
    [46] Haase M, Widjajakusuma J. Damage Identification Based on Ridges and Maxima Lines of the Wavelet Transform. International Journal of Engineering Science. 2003, 41:1 423 ~ 1 443;
    [47] 高宝成,时良平,等基于小波分析的简支梁裂缝识别方法研究振动工程学报,1997,10(1):81~85;
    [48] Liew K M, Wang Q. Application of Wavelet Theory for Crack Identification in Structures. Journal of Engineering Mechanics, 1998,124(2): 152 ~ 157;
    [49] 丁幼亮,李爱群,韩晓林.基于小波包分析的结构实时损伤报警数值研究.东南大学学报(自然科学版),2003,33(5):643~646;
    [50] Zhou Z, Noori M, Amand R St. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2000, 126(7):677 ~ 683;
    [51] 李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与试验研究.土木工程学报,2003,36(5):52~57;
    [52] Adriana Hera, Ahikun Hou. Application of Wavelet Approach for ASCE Structural Health Monitoring Benchmark Studies. Journal of Engineering Mechanics, 2004, 130(1) :96~ 104;
    [53] Yang J N, Lei Y, Lin S, Huang N. Hilbert-Huang Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, 2004,130(1):85 ~ 95;
    [54] 刘志刚,王晓茹,钱清泉.小波网络的研究进展与应用.电力系统自动化,2003,27(6):73~79;
    [55] 鞠彦忠,阎贵平,陈建斌,等.用小波神经网络检测结构损伤.工程力学,2003,20(6):176~181;
    [56] Sun Z, Chang C C. Structural Damage Assessment Based on Wavelet Packet Transform. Journal of Structural Engineering, 2002, 128(10):1 354 ~ 1 361;
    [57] Bonato P, Ceravolo R, Stefano A De, Knafilitz M. Bilinear TimeFrequency Transformations in the Analysis of Damaged Structures.Mechanical Systems and Signal Processing, 1997, 11(4):509 ~ 527
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  5
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-10-25
  • 刊出日期:  2005-05-20

目录

    /

    返回文章
    返回