STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK
-
摘要: 小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。小波神经网络用于混凝土强度预测的结果表明,它比传统的BP神经网络的收敛速度快,预测精度高。Abstract: Wavelet neural network is a kind of neural networks, which can closely combine wavelet theory with neural network theory, and avoid the blindness of framework designs for BP neural networks and the problem of nonlinear optimizations, such as local optimization.So it can greatly simplify the training of neural networks.It has good abilities of function learning and dissemination with a vast range of prospects for application.In this paper, the wavelet neural network is applied to predict the strength of concrete.The results show that the convergence speed of wavelet neural network is faster and its predicting result is more accurate than that of BP network
-
Key words:
- wavelet neural network /
- concrete /
- prediction of strength
-
陈哲,冯天瑾.小波神经网络研究进展及展望.青岛海洋大学学报,1999,29(4):663~666 [2] 牛东晓,邢棉.时间序列的小波神经网络预测模型的研究.系统工程理论与实践,1999(5):89~92 [3] 李凡.用小波神经网络预测高速公路软土地基最终沉降量.合肥工业大学学报,2001,24(6):1 124~1 127 [4] 万建.一种小波神经网络结构及其学习算法研究.系统工程与电子技术,2002,24(3):108~111 [5] 孙小点.连续小波神经网络优化结构研究.系统仿真学报,2001,13(增刊):156~159
点击查看大图
计量
- 文章访问数: 51
- HTML全文浏览量: 7
- PDF下载量: 99
- 被引次数: 0