Research on Mechanisms of Water and Mud Inrush During Tunnelling in Deep and Large Fault Fracture Zones
-
摘要: 以邻近高家湾断层破碎带隧道施工为工程背景,采用理论分析、数值模拟等手段研究深大富水断层破碎带隧道掌子面防突岩体剪切失稳机理,并对防突安全厚度进行分析。研究结果表明:断层破碎带隧道突水突泥本质是施工扰动下断层破碎带围岩应力场和渗流场发生改变,在水力耦合作用下,掌子面防突厚度不足造成剪切失稳;断层带水压,掌子面涌水量、水平向位移及塑性区等失稳评价指标在隧道向断层破碎带开挖过程中均表现出明显的"稳定—发展—失稳"阶段特征,与实际施工中突水突泥发展历程基本一致。综合各失稳评价指标,确定该隧道临界防突安全厚度为0.95倍隧道等效直径;相比于断层破碎带宽度,埋深对深大富水断层破碎带隧道防突安全影响更显著,并且随着隧道埋深的增大,断层破碎带宽度对防突安全的影响也逐渐增强。Abstract: Taking the tunnel construction near the Gaojiawan fault fracture zone as the engineering background, the shear instability mechanism of the outburst-prevention rock mass at the working face in the deep and large water-rich fault fracture zone tunnel was studied by theoretical analysis and numerical simulations, and the safety thickness of the outburst-prevention was analyzed. The results showed that the essence of water and mud inrush in tunnels near the water rich fault fracture zone was that construction disturbance leaded to the change of the surrounding rock stress fields and seepage fields in the fault fracture zone. Under the water and force coupling effect, the insufficient outburst-prevention thickness of the rock mass at the at the working face in tunnels caused shear instability; the changes of instability evaluation indexes such as fault zone water pressure, water inrush volumes at working faces of tunnels, horizontal displacement and plastic zone areas all reflected obvious characteristics of "stability—development—instability" in the process of tunneling through the fault fracture zone, which were also basically consistent with the development process of water and mud inrush in actual construction. Integrating various instability evaluation indexes, it was determined that the critical safety thickness of the tunnel for outburst prevention was 0.95 times the effective diameter of the tunnel. Compared with the width of the fault fracture zone, the burial depth had a more significant impact on the outburst-prevention of tunnels in the deep and large water-rich fault fracture zone. Simultaneously, with the increase of the tunnel burial depth, the influence of the width of the fault fracture zone on the safety of outburst prevention gradually increased.
-
Key words:
- tunnel /
- water inrush /
- mud inrush /
- fault fracture zone /
- thickness of outburst-prevention /
- mechanism
-
[1] 李术才,许振浩,黄鑫,等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报,2018,37(5): 1041-1069. [2] MA D,REZANIA M,YU H S,et al. Variation of hydraulic properties of granular sandstones during water inrush: effect of small particle migration[J]. Engineering Geology,2017,217: 61-70. [3] 王德明, 张庆松, 张霄, 等. 断层破碎带隧道突水突泥灾变演化模型试验研究[J]. 岩土力学, 2016, 37(10): 2851-2860. [4] 左清军, 吴立, 林存友, 等. 富水软岩隧道跨越断层段塌方机制分析及处治措施[J]. 岩石力学与工程学报, 2016, 35(2): 369-377. [5] 李生杰, 谢永利, 朱小明. 高速公路乌鞘岭隧道穿越F4断层破碎带涌水塌方工程对策研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3602-3609. [6] RIBICIC B M,HOBLAJ M K R. Hydrofracturing of rocks as a method of evaluation of water,mud,and gas inrush hazards in underground coal mining[C]//4th IMWA.1991. [7] 孟凡树, 王迎超, 焦庆磊, 等. 断层破碎带突水最小安全厚度的筒仓理论分析[J]. 哈尔滨工业大学学报, 2020, 52(2): 89-95. [8] FU H, AN P, CHENG G, et al. Calculation of the safety thickness of water inrush with tunnel axis orthogonal to fault[J/OL]. Arabian Journal of Geosciences, 2021, 14(11)[2022-06-14].https://doi.org/10.1007/S12517-021-07297-8. [9] 李忠. 在建铁路隧道水砂混合物突涌灾害的形成机制、预报及防治[D]. 北京:中国矿业大学, 2009. [10] 中华人民共和国水利部. 水工隧洞设计规范:SL 279—2016[S]. 北京: 中国水利水电出版社, 2016. [11] 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S].北京: 中国铁道出版社, 2016. [12] 陈泽龙. 富水断层带前隧道防突岩盘临界安全厚度研究[D]. 北京:北京交通大学, 2020. [13] 尚明源. 富水区隧道掌子面稳定性分析及防排水结构体系研究[D]. 成都:西南交通大学, 2018. [14] SHEOREY P R. A theory for in-situ stresses in isotropic and transversely isotropic rock[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1994, 31(1): 23-34.
点击查看大图
计量
- 文章访问数: 97
- HTML全文浏览量: 8
- PDF下载量: 5
- 被引次数: 0