Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters
-
摘要: 结合输电塔的结构特征、风致响应特点及荷载特性,提出了一种自立式输电塔塔身平面内预应力拉索加固技术和设计方法。以2020年"黑格比"台风中倒塌的330ZM3-40塔为研究对象,首先开展了拉索预应力对铁塔构件的内力影响及风振响应分析,随后开展了拉索预应力、截面面积、阻尼系数及倾角等设计参数对铁塔风振响应的影响分析。研究表明,经合理设计,在塔身增设多层平面内交叉拉索,可有效降低铁塔在风荷载作用下位移响应及铁塔内力;拉索截面是确保输电塔风振响应效果的关键因素,拉索截面一般应大于100mm;拉索预应力不宜大于150MPa,确保铁塔构件内力增屈比不超过5%;拉索安装倾角按40°~60°布置较为合适;为了更好地控制输电塔的风振响应,应额外增加拉索体系的阻尼,计算表明阻尼比合理取值范围为5%~20%。Abstract: Combined with the structural characteristics, wind-induced response characteristics and load characteristics of transmission tower, a wind resistant reinforcement technique and design method of in-plane cable of self-supporting transmission tower were proposed. Taking 330ZM3-40 tower collapsed in "Hagupit" typhoon in 2020 as the research object, the influence of prestress of cable on the internal force of components of tower and wind-induced vibration time history analysis were carried out. The influence of prestress, section area, damping coefficient and inclination of cable on wind-induced vibration control of tower was analyzed. The research showed that, through reasonable design, setting multi-layer in-plane crossing cables on the body of tower could effectively control the displacement response and internal force of the tower under wind load. The section area of cable was the key factor to ensure the wind-induced vibration control effect of transmission tower, and section area of cable should be greater than 100 mm2; the prestress of cable should not be greater than 150 MPa to ensure that the internal force increase-yield ratio of tower components did not exceed 5%; the angle of installation of cable was 40°-60°; in order to achieve better wind-induced vibration control effect, additional dampings for the cable system should be added with the reasonable value range 5%-20%.
-
[1] 谢强,李杰.电力系统自然灾害的现状与对策[J].自然灾害学报, 2006(4):126-131. [2] 朱云祥,张若愚,曹枚根,等. 海岛大跨越输电塔线体系风振响应及风振系数[J]. 高压电器, 2022, 58(1): 48-58. [3] 厉天威,江巳彦,赵建华,等.南方电网沿海地区输电线路风灾事故分析[J].高压电器,2016,52(6):23-28. [4] 张锋,吴秋晗,李继红.台风"云娜"对浙江电网造成的危害与防范措施[J].中国电力,2005(5):39-42. [5] 吴明祥,包建强,叶尹,等.超强台风"桑美"引起温州电网输电线路事故的分析[J].电力建设,2007(9):39-41. [6] 孙吉波,辛拓,王延纬.广东电网抗击超强台风"威马逊"的经验及反思[J].广东电力,2014,27(12):80-83. [7] 雷旭,付兴,肖凯,等.强风作用下输电塔结构不确定性倒塌分析[J].中国电机工程学报,2018,38(增刊1):266-274. [8] 谢强,李继国,严承涌,等.1 000 kV特高压输电塔线体系风荷载传递机制风洞试验研究[J].中国电机工程学报,2013,33(1):109-116. [9] 李小芳. 台风荷载作用下110 kV输电塔薄弱部位加固研究[D]. 长沙:长沙理工大学,2016. [10] LU C H, MA X, MILLS J E. Structural performance of bolted connectors in retrofitted transmission tower leg members[C]//Electrical Transmission and Substation Structures. 2015: 489-499. [11] LU C H, MA X, MILLS J E. Modeling of retrofitted steel transmission towers[J]. Journal of Constructional Steel Research, 2015, 112: 138-154. [12] 楼文娟,姜雄,夏亮,等.长横担输电塔风致薄弱部位及加强措施[J].浙江大学学报(工学版),2013,47(10):1798-1804. [13] 谢强,丁兆东,赵桂峰, 等.不同横隔面配置方式的输电塔抗风动力响应分析[J].高电压技术,2009,35(3):683-688. [14] 张戬, 杨正, 谢强. 输电塔T形组合角钢加固方法试验研究[J].工业建筑, 2019, 49(4):37-43. [15] 肖琦, 王永杰, 肖茂祥,等.横隔面在高压输电塔抗风设计中的作用分析[J].东北电力大学学报,2011,31(增刊1):32-36. [16] 钟万里,吴灌伦,王伟,等.一种高压输电塔在风场中的失稳与加固[J].中南大学学报(自然科学版),2013,44(2):593-597. [17] 郭正兴, 罗斌. 大跨空间钢结构预应力施工技术研究与应用:大跨空间钢结构预应力技术发展与应用综述[J].施工技术, 2011, 40(9): 101-108. [18] 张若愚,曹枚根,毛宇,等.增设拉索对特高压直流复合避雷器地震响应的影响分析[J].南方电网技术, 2020,14(4):31-38. [19] 张爱林,陆瑶. 提高输电塔架承载力的预应力技术研究[J]. 钢结构, 2010, 25(1): 10-14. [20] 杨文刚,王璋奇,朱伯文,等. 特高压单柱拉索塔塔线体系风振响应时程分析[J].中国电机工程学报, 2015, 35(12):3182-3191. [21] 刘树堂. 输电杆塔结构及其基础设计[M]. 北京:中国水利水电出版社,2005. [22] 中华人民共和国住房和城乡建设部.110 kV~750 kV架空输电线路设计规范:GB 50545—2010. [S]. 北京:中国计划出版社,2010. [23] 中华人民共和国住房和城乡建设部.高耸结构设计规范:GB 50135—2006[S]. 北京:中国建筑工业出版社,2006. [24] 余传运,张建润.输电塔线体系动力特性及风振响应分析[J].东南大学学报(自然科学版),2019,49(1):116-124. [25] 赵爽,晏致涛,李正良,等. 1 000 kV苏通大跨越输电塔线体系气弹模型的风洞试验研究[J].中国电机工程学报,2018,38(17):5257-5265,5323. [26] 于志强. 大跨越输电塔线体系的风荷载模拟及耦合风振研究[J]. 工业建筑, 2014,44(增刊): 503-508.
点击查看大图
计量
- 文章访问数: 127
- HTML全文浏览量: 14
- PDF下载量: 2
- 被引次数: 0